cho tam giác abc ,có 2 đường trung tuyến bm và cn.gọi d,e lần lượt là trung điểm của bn và cm
a/ tính de biết bc=12cm
b/ de cắt bm và cn lần lượt tại i,k.
cm: di=ik=ke
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác GBC có : D là trung điểm GB
E là trung điểm GC
=> DE là đường trung bình tam giác GBC
=> DE // BC và DE = 1/2 BC (1)
Xét tam giác ABC có : N là trung điểm AB
M là trung điểm AC
=> MN là đường trung bình tam giác ABC
=> MN // BC và MN = 1/2 BC (2)
Từ (1) ; (2) suy ra MN // DE ( đpcm ) và MN = DE
b, Có : MN // DE và MN = DE ( cma )
=> tứ giác MNDE là hình bình hành
=> ND // ME và ND = ME
a) Tam giác ABC có NA = NB; MA = MC
=> NM là đường trung bình
=> MN // BC; MN = 1/2 BC (1)
Tam giác GBC có: DG = DB; EG = EC
=> ED là đường trung bình
=> ED // BC; ED = 1/2 BC
Từ (1) và (2) suy ra: MN // DE; MN = ED
=> NMED là hình bình hành
=> ME // ND
ta có GM=1/2GB (tính chất đường trung tuyến của tam giác) GD=1/2GB (gt) suy ra GM=GD ta có GN=1/2GC(tính chất đường trung tuyến của tam giác) GE=1/2GC (gt) vậy tứ giác MNDE có GM=GD và GN=GE nên là hình bình hành(vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường) => MN//DE , ND//ME (tích chất hình bình hành) (đpcm)
a: Xét ΔABC có
DE//BC
nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)
hay DE=5(cm)
b: Xét hình thang BDEC có
P là trung điểm của BD
Q là trung điểm của EC
Do đó: PQ là đường trung bình của hình thang BDEC
Suy ra: PQ//DE//CB và \(PQ=\dfrac{DE+BC}{2}=\dfrac{10+5}{2}=7.5\left(cm\right)\)
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC