Tam giác ABC có ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R thứ tự là trung điểm của các đoạn thẳng OA, OB, OC
Chứng minh rằng tam giác PQR đồng dạng với tam giác ABC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong △ OAB, ta có PQ là đường trung bình nên: PQ =1/2 AB (tính chất đường trung bình của tam giác)
Suy ra: (1)
Trong △ OAC, ta có PR là đường trung bình nên:
PR = 1/2 AC (tính chất đường trung bình của tam giác)
Suy ra: (2)
Trong △ OBC, ta có QR là đường trung bình nên
QR = 1/2 BC (tính chất đường trung bình của tam giác)
Suy ra:
Từ (1), (2) và (3) suy ra:
Vậy △ PQR đồng dạng △ ABC (c.c.c)
-Xét △OAB có: P trung điểm OA, Q trung điểm OB (gt)
\(\Rightarrow\)PQ là đường trung bình của △OAB.
\(\Rightarrow\)PQ=\(\dfrac{1}{2}\)AB.
\(\Rightarrow\dfrac{PQ}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)
-Xét △OAC có: P trung điểm OA, R trung điểm OC (gt)
\(\Rightarrow\)PR là đường trung bình của △OAC.
\(\Rightarrow\)PR=\(\dfrac{1}{2}\)AC.
\(\Rightarrow\dfrac{PR}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)
-Xét △OBC có: R trung điểm OC, Q trung điểm OB (gt)
\(\Rightarrow\)RQ là đường trung bình của △OBC.
\(\Rightarrow\)RQ=\(\dfrac{1}{2}\)BC.
\(\Rightarrow\dfrac{RQ}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)
-Xét △PQR và △ABC có: \(\dfrac{PQ}{AB}=\dfrac{PR}{AC}=\dfrac{QR}{BC}\left(=\dfrac{1}{2}\right)\)
\(\Rightarrow\)△PQR ∼ △ABC (c-c-c)
* Trong △ AOB ta có:
P trung điểm của OA (gt)
Q trung điếm của OB (gt)
Suy ra PQ là đường trung bình của △ AOB
Suy ra: PQ = 1/2 AB (tính chất đường trung bình của tam giác)
Suy ra: (1)
* Trong △ OAC, ta có:
P trung điểm của OA (gt)
R trung điểm của OC (gt)
Suy ra PR là đường trung bình của tam giác OAC.
Suy ra: PR =1/2 AC (tính chất đường trung bình của tam giác)
Suy ra: (2)
* Trong △ OBC, ta có:
Q trung điểm của OB (gt)
R trung điểm của OC (gt)
Suy ra QR là đường trung bình của tam giác OBC
Suy ra: QR = 1/2 BC (tính chất đường trung bình của tam giác)
Suy ra: (3)
Từ (1), (2) và (3) suy ra:
Vậy △ PQR đồng dạng △ ABC (c.c.c)
con này khá