Hình thang cân ABCD (AB //CD) có hai đường chéo AC và BD cắt nhau tại O 9h.11).
Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3OM, đáy lớn CD = 5,6 cm
a) Tính độ dài đoạn thẳng MN và đáy nhỏ AB
b) So sánh độ dài đoạn thẳng MN với nửa hiệu các độ dài của CD và AB
Lời giải
a)
Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC
\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)
Tỷ số đồng dạng
\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)
\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)
b)
\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)
\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)