Tìm GTNN,GTLN của: \(A=x^3+y^3\) biết x,y\(\ge0\) \(x^2+y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình với cho x+y+z=3 Tìm GTLN xy/(x+3y+2z) + yz/(y+3z+2x) + zx/(z+3x+2y)
*) tìm giá trị lớn nhất: từ giả thiết \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}\Leftrightarrow}x^3+y^3\le x^2+y^2=1}\)
maxA=1 \(\Leftrightarrow\hept{\begin{cases}x^3=x^2\\y^3=y^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}}\)
*) tìm giá trị nhỏ nhất \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=1\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{x+y}{\sqrt{2}}\le1\)
do đó \(x^3+y^3\ge\frac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\)theo bđt Bunhiacopxki
\(\left(x^3+y^3\right)\left(x+y\right)=\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\)
\(\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=x^2+y^2=1\)
vậy minA=\(\frac{1}{\sqrt{2}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}=\frac{6^2}{3}=12$
Vậy $A_{\min}=12$. Giá trị này đạt tại $x=y=z=2$
--------------
Tìm max:
$A=x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=36-2(xy+yz+xz)$
Vì $x,y,z\geq 0\Rightarrow xy+yz+xz\geq 0$
$\Rightarrow A=36-2(xy+yz+xz)\leq 36$
Vậy $A_{\max}=36$. Giá trị này đạt tại $(x,y,z)=(0,0,6)$ và hoán vị.
Ta có : x + y = 1 => y = 1 - x
Do đó: \(0\le x\le1\)
\(A=x^2+\left(1-x\right)^2=2x^2-2x+1\)
\(=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Min A = 1/2
Dấu = xảy ra khi: \(x=y=\frac{1}{2}\)
Do \(0\le x\le1\) nên \(x\left(x-1\right)\le0\)
\(\Rightarrow A=2x\left(x-1\right)+1\le1\)
Max A =1
Dấu = xảy ra khi: \(\orbr{\begin{cases}x=1\Rightarrow y=0\\x=0\Rightarrow y=1\end{cases}}\)
=.= hok tốt!!
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.
*Tìm min
Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )
Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)
Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)
\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.
Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)
\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.
*Tìm Max:
Chưa nghĩ ra.
*)Tìm GTLN
Từ giả thiết có: \(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\)\(\Rightarrow x^3+y^3\le x^2+y^2=1\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
*)Tìm GTNN
Ta có: \(A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Áp dụng BĐT \(\left(x+y\right)^2\ge2\left(x^2+y^2\right)\) ta có:
\(\left(x+y\right)^2\ge2\left(x^2+y^2\right)=2\Rightarrow x+y\ge\sqrt{2}\left(x;y\ge0\right)\left(1\right)\)
Và \(xy\le\dfrac{x^2+y^2}{2}=\dfrac{1}{2}\Rightarrow-xy\ge-\dfrac{1}{2}\)
\(\Rightarrow x^2+y^2-xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(A=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\sqrt{2}\cdot\dfrac{1}{2}=\dfrac{1}{\sqrt{2}}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
***) Vì \(x,y\ge0\) và \(x^2+y^2=1\) nên:
\(\left\{{}\begin{matrix}0\le x\le1\\0\le y\le1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3\le x^2\\y^3\le y^2\end{matrix}\right.\Leftrightarrow x^3+y^3\le x^2+y^2=1\)
Vậy Max A=1 \(\Leftrightarrow\left\{{}\begin{matrix}x^3=x^2\\y^3=y^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0;y=1\\x=1;y=0\end{matrix}\right.\)
***) Áp dụng bất đẳng thức cô si ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy=\left(x+y\right)^2\)
\(\Leftrightarrow\left(x+y\right)^2\le2\Leftrightarrow x+y\le\sqrt{2}\Rightarrow\dfrac{x+y}{\sqrt{2}}\le1\) (1)
Áp dụng BĐT Bunyakovsky có:
\(\left(x^3+y^3\right)\left(x+y\right)\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=\left(x^2+y^2\right)^2=1\) (2)
Mặt khác: \(x^3+y^3\ge\dfrac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\) (theo 1) (3)
Từ (2);(3) \(\Rightarrow x^3+y^3\ge\dfrac{1}{\sqrt{2}}\)
Vậy min A=\(\dfrac{1}{\sqrt{2}}\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)