C= ( 28 + 83) : ( 25 x 23)
GIải chi tiết giúp mình với!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm vài câu cho bạn tham khảo,các câu còn lại thì bạn làm tương tự thôi
23.\(\sqrt{14-2\sqrt{33}}=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\left|\sqrt{11}-\sqrt{3}\right|=\sqrt{11}-\sqrt{3}\)
28. \(\sqrt{25-4\sqrt{6}}=\sqrt{\left(2\sqrt{6}\right)^2-2.2\sqrt{6}.1+1^2}=\sqrt{\left(2\sqrt{6}-1\right)^2}\)
\(=\left|2\sqrt{6}-1\right|=2\sqrt{6}-1\)
29.\(\sqrt{14-8\sqrt{3}}=\sqrt{14-2\sqrt{48}}=\sqrt{\left(\sqrt{8}\right)^2-2\sqrt{6}.\sqrt{8}+\left(\sqrt{6}\right)^2}\)
\(=\sqrt{\left(\sqrt{8}-\sqrt{6}\right)^2}=\left|\sqrt{8}-\sqrt{6}\right|=\sqrt{8}-\sqrt{6}\)
23.
Ta sẽ tìm điểm \(I\left(a;b;c\right)\) sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\) (1)
\(\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-2-a;2-b;6-c\right)\\\overrightarrow{IB}=\left(-3-a;1-b;8-c\right)\\\overrightarrow{IC}=\left(-1-a;-b;7-c\right)\\\overrightarrow{ID}=\left(1-a;2-b;3-c\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\left(-5-4a;5-4b;24-4c\right)\)
(1) thỏa mãn khi: \(\left\{{}\begin{matrix}-5-4a=0\\5-4b=0\\24-4c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{4}\\b=\dfrac{5}{4}\\c=6\end{matrix}\right.\)
\(\Rightarrow I\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\)
Khi đó:
\(T=MA^2+MB^2+MC^2+MD^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2\)
\(=4MI^2+IA^2+IB^2+IC^2+ID^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\right)\)
\(=4MI^2+IA^2+IB^2+IC^2+ID^2\) (do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\))
\(IA^2+IB^2+IC^2+ID^2\) cố định nên \(T_{min}\) khi \(MI_{min}\)
\(\Leftrightarrow M\) trùng I
\(\Rightarrow M\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\Rightarrow x+y+z=-\dfrac{5}{4}+\dfrac{5}{4}+6=6\)
24.
\(a+b=4\Rightarrow b=4-a\)
ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow C\left(a;a;0\right)\)
Tương tự ta có: \(C'\left(a;a;b\right)\)
M là trung điểm CC' \(\Rightarrow M\left(a;a;\dfrac{b}{2}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{A'B}=\left(a;0;-b\right)=\left(a;0;a-4\right)\\\overrightarrow{A'D}=\left(0;a;-b\right)=\left(0;a;a-4\right)\\\overrightarrow{A'M}=\left(a;a;-\dfrac{b}{2}\right)=\left(a;a;\dfrac{a-4}{2}\right)\end{matrix}\right.\)
Theo công thức tích có hướng:
\(\left[\overrightarrow{A'B};\overrightarrow{A'D}\right]=\left(-a^2+4a;-a^2+4a;a^2\right)\)
\(\Rightarrow V=\dfrac{1}{6}\left|\left[\overrightarrow{A'B};\overrightarrow{A'D}\right].\overrightarrow{A'M}\right|=\dfrac{1}{6}\left|a\left(-a^2+4a\right)+a\left(-a^2+4a\right)+\dfrac{a^2\left(a-4\right)}{2}\right|\)
\(=\dfrac{1}{4}\left|a^3-4a^2\right|=\dfrac{1}{4}\left(4a^2-a^3\right)\)
Xét hàm \(f\left(a\right)=\dfrac{1}{4}\left(4a^2-a^3\right)\) trên \(\left(0;4\right)\)
\(f'\left(a\right)=\dfrac{1}{4}\left(8a-3a^2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=\dfrac{8}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)_{max}=f\left(\dfrac{8}{3}\right)=\dfrac{64}{27}\)
a)
`9/2-3`
`=9/2-6/2`
`=3/2`
b)
`8/5xx25/12`
`=10/3`
c)
`4:3/7`
`=4xx7/3`
`=28/3`
\(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-1970}{29}+\frac{x-1972}{27}-6=0\)
\(\Leftrightarrow\)\(\frac{x-29}{1970}-1+\frac{x-27}{1972}-1+\frac{x-25}{1974}-1+\frac{x-23}{1976}-1+\frac{x-1970}{29}-1+\frac{x-1972}{27}-1=0\) \(\Leftrightarrow\) \(\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1970}{29}+\frac{x-1999}{27}=0\)
\(\Leftrightarrow\)\(\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{29}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{29}+\frac{1}{27}\ne0\)
\(\Rightarrow\)\(x-1999=0\)
\(\Leftrightarrow\)\(x=1999\)
Vậy...
Cảm ơn bạn nhiều nha. Lần sau mình có bài j khó nữa nhớ giúp mình vs nhá😊😊😊
( 3x/7 + 1 ) : (-4 ) = -1/28
3x/7 + 1 = -1/28 x (-4 )
(3x/7 + 1 = 1/7
3x/7 = 1/7 - 1
3x/7 = -6/7
Suy ra 3x = -6
x = -6 : 3
x = -2
a) 86 + 357 + 14
= ( 86 + 14 ) + 357
= 100 + 357
= 457
b) 72 + 69 + 128
= ( 72 + 128 ) + 69
= 200 + 69
= 269
c) 25 . 5 . 4 . 27
= ( 25 . 4 ) . 5 . 27
= 100 . 5 . 27
= 500 . 27
= 13500
d) 28 . 64 + 28 . 36
= 28 . ( 64 + 36 )
= 28 . 100
= 2800
a)
\(86+357+14=\left(86+14\right)+357=100+357=457\)
b)
\(72+69+128=\left(72+128\right)+69=200+69=269\)
c)
\(25.5.4.27.2=\left(25.4\right).\left(5.2\right).27=100.10.27=27000\)
d)
\(28.64+28.36=28.\left(64+36\right)=28.100=2800\)
\(\frac{45.16-17}{45.15+28}=\frac{45.\left(15+1\right)-17}{45.15+28}=\frac{45.15+45-17}{45.15+28}=\frac{45.15+28}{45.15+28}=1\)
45 . ( 15 + 1) - 17 45 . 15 + 28
= _______________ = ____________ = 1
45 . 15 + 28 45 . 15 + 28
C=(2^8+8^3):(2^5+3)
=(2^8+8^3):2^8
=(2^8+2^9):2^8
=2^8:2^8+2^9:2^8
=1+2=3
Vậy C=3
Lời giải:
\(C=\left(2^8+8^3\right):\left(2^5.2^3\right)\)
\(\Rightarrow C=\left(2^8+2^{3.3}\right):\left(2^5.2^3\right)\)
\(\Rightarrow C=\left(2^8+2^9\right):2^8\)
\(\Rightarrow C=2^8:2^8+2^9:2^8\)
\(\Rightarrow C=1+2\)
\(\Rightarrow C=3\)