Cho \(m< n\), hãy so sánh :
a) \(m+2\) và \(n+2\)
b) \(m-5\) và \(n-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,vì \(m< n\)
\(\Rightarrow m+2< n+2\) cộng cả 2 vế với 2
b,vì \(m< n\)
\(\Rightarrow m+\left(-5\right)< n+\left(-5\right)\)cộng cả 2 vế với -5
\(\Rightarrow m-5< n-5\)
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A<B=>1+m<1+n=>m<n
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)}{m}\)=m+1
B= \(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1
Mà A<B
=>m+1<n+1
=>m<n
\(A=\frac{\frac{m\left(2+2m\right)}{2}}{m}=1+m\)
\(B=\frac{\frac{n\left(2+2n\right)}{2}}{n}=1+n\)
\(A< B\Rightarrow1+m< 1+n\Rightarrow m< n\)
a) m+2 < n+2
b) m-5 < n-5