K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

A B C F E D M N K

Ta có: EF // BD (gt)

BF // ED (gt)

Suy ra EF = BD; BF = DE (t/c đoạn chắn)

Trên AB lấy K sao cho AF = BK

\(\Delta AFE\)\(\Delta KBD\) có:

AF = BK (cách vẽ)

AFE = KBD (đồng vị)

EF = BD (cmt)

Do đó, \(\Delta AFE=\Delta KBD\left(c.g.c\right)\)

=> AE = KD (2 cạnh t/ứ)

= BF = ED (theo gt AE = BF, theo cmt BF = ED)

Kẻ \(DM\perp AB;DN\perp AC\)

\(\Delta\) DMK vuông tại M và \(\Delta\) DNE vuông tại N có:

DK = DE (cmt)

MKD = NED (cùng đồng vị với FAE)

Do đó, \(\Delta DMK=\Delta DNE\) (cạnh huyền - góc nhọn)

=> DM = DN (2 cạnh t/ứ)

=> D cách đều AB và AC (đpcm)

5 tháng 5 2017

thanks

5 tháng 4 2017

A B C E D F

Ta sẽ nối điểm F với D

Ta có: EF//BC=>EF//BD(D\(\in\)BC)=>^EFD=^BDF(so le trong).

ED//AB=>ED//BF(F\(\in\)AB)=>^BFD=^EDF

Xét tam giác BFD và tam giác EDF:^EFD=^BDF; FD chung; ^BFD=^EDF=> Tam giác BFD = Tam giác EDF (g.c.g)

=>BF=ED(2 cạnh tương ứng). Mà AE=BF=>AE=ED(t/c bắc cầu)

Tam giác BFD=Tam giác EDF=>BD=FE=>^FBD=^FED(2góc tương ứng)

FE//BD=>^FBD=^AFE(đồng vị)

Xét tam giác BFD  và tam giác FAE có: ^FBD=^AFE; BD=FE; ^FDB=^AEF=> Tam giác BFD=Tam giác FAE (g.c.g)

=>^BFD=^FAE=>FD//AE. Do FD//AE; ED//AF=>FD=AE; ED=AF(t/c đoạn chắn)

Mà DE=AE(cmt)=>DF=AF=AE=ED=>^FDE=^AED=90o

Xét tam giác FDE và tam giác AED: DE chung; ^FDE=^AED=90o; FD=AE=> Tam giác FDE=Tam giác AED(c.g.c)(1)

FD//EC=>^FDE=^CED(so le trg). FE//DC=>^FED=^CDE(so le trg)

Xét tam giác FED và tam giác CDE: ^FDE=^CED; DE chung; ^FED=^CDE=>Tam giác FED=Tam giác CDE(g.c.g)(2)

Từ (1) và (2)=> Tam giác AED=Tam giác CED=>DA=DC

=>Tam giác BFD=Tam giác DEC(g.c.g)=>DB=DA. mà DA=DC=> Điểm D cách đều AB và AC (đpcm)

22 tháng 11 2017
Giúp mình gấp
23 tháng 11 2017

Ta co AB = AC  => Tam giác ABC là tam giác cân tại A 

Kẻ AM 

Xét hai tam giác AMB  và tam giác AMC có:

BM =MC ( Vì M là trung điểm của BC)

gÓC B = góc C ( vì ABC là tam giác cân)

AB = BC ( gt)

=> Tam giác ABM = tam giác AMC ( c.g.c)

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>ΔADE\(\sim\)ΔABC

b: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

2 tháng 4 2022

Em cảm ơn ạ

9 tháng 3 2021

a, Ta có:

ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.⇒⇒ DE//AE

Xét tam giác ADE và ABC có:

ADAB=AEACADAB=AEAC

ˆDAE=ˆBACDAE^=BAC^

⇒⇒ Tam giác ADF đồng dạng với tam giác ABC

 

Đọc tiếp

15 tháng 2 2016

B C A M N D E

a) Theo gt ta có : AB = AC

=> tam giác ABC cân tại A

=> góc B = góc C *

Xét tam giác ABD và tam giác ACE có :

+ AB = AC(gt)

+ góc B = góc C ( theo * )

+ BD = CE (gt)

=> tam giác ABD = tam giác ACE ( c . g .c )

=> AD = AE ( 2 cạnh tương ứng )

b) Ta có : DM vuông góc với BC, EN vuông góc với BC

=> tam giác MBD và tam giác NCE là tam giác vuông

Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :

+ BD = CE (gt)

+ góc B = góc C ( theo * )

=>  tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )

c) theo CM ý b) ta có : tam giác MBD = tam giác NCE

=> BM = CN (2 cạnh tương ứng )

Mà :MA + BM = AB, AN + CN = AC

Lại có : AB = AC (gt)

=> AM = AN 

=> tam giác AMN cân tại A

Nếu : ABC là tam giác đều 

=> góc A = 60\(^o\)

=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))

 

 

 

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

BA=BE

Do đó:ΔABD=ΔEBD

Suy ra: góc ABD= góc EBD

hay BD là tia phân giác của góc ABC

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

mà DC>DE

nên DF>DE

d: Đề sai rồi bạn

28 tháng 2 2022

s câu d sai bạn

 

TK phần A,B ạ con C là chịu

undefined

29 tháng 3 2022

refer

undefined