Tìm cặp số x, y biết x, y đều là số nguyên tố thỏa mãn : x2 - 2y2 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: x2-2y2 = 1
Vi x,y deu la so nguyen to nen: x2\(\ge\) 4 2y2\(\ge\)8
Vi vay: x2-2y2 < 0 (trái với đề bài đã cho)
Suy ra: Khong co gia tri nao cuar x,y ca
\(\Leftrightarrow x^2-1=2y^2\)
Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ
\(\Rightarrow x=2k+1\)
Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)
Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
\(\Rightarrow y=2\)
\(\Rightarrow x^2-9=0\Rightarrow x=3\)
Vậy \(\left(x;y\right)=\left(3;2\right)\)
a.
\(\Leftrightarrow2x^2-4x+4y^2=4xy+4\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4x+4\right)=8\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2\right)^2=8\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow\left(x-2\right)^2\le8\)
\(\Rightarrow\left(x-2\right)^2=\left\{0;1;4\right\}\)
TH1: \(\left(x-2\right)^2\Rightarrow x=2\) thế vào (1)
\(\Rightarrow\left(2-2y\right)^2=8\Rightarrow\left(1-y\right)^2=2\) (ko tồn tại y nguyên t/m do 2 ko phải SCP)
TH2: \(\left(x-2\right)^2=1\Rightarrow\left(x-2y\right)^2=8-1=7\), mà 7 ko phải SCP nên pt ko có nghiệm nguyên
TH3: \(\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\) thế vào (1):
- Với \(x=0\Rightarrow\left(-2y\right)^2+4=8\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=2\Rightarrow\left(2-2y\right)^2+4=8\Rightarrow\left(1-y\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=2\end{matrix}\right.\)
Vậy pt có các cặp nghiệm là:
\(\left(x;y\right)=\left(0;1\right);\left(0;-1\right);\left(2;0\right);\left(2;2\right)\)
b.
\(\Leftrightarrow2x^2+4y^2+4xy-4x=14\)
\(\Leftrightarrow\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)=18\)
\(\Leftrightarrow\left(x+2y\right)^2+\left(x-2\right)^2=18\) (1)
Lý luận tương tự câu a ta được
\(\left(x-2\right)^2\le18\Rightarrow\left(x-2\right)^2=\left\{0;1;4;9;16\right\}\)
Với \(\left(x-2\right)^2=\left\{0;1;4;16\right\}\) thì \(18-\left(x-2\right)^2\) ko phải SCP nên ko có giá trị nguyên x;y thỏa mãn
Với \(\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\) thế vào (1)
- Với \(x=5\Rightarrow\left(5+2y\right)^2+9=18\Rightarrow\left(5+2y\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}5+2y=3\\5+2y=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=-1\\y=-4\end{matrix}\right.\)
- Với \(x=-1\Rightarrow\left(-1+2y\right)^2=9\Rightarrow\left[{}\begin{matrix}-1+2y=3\\-1+2y=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2\\y=-1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(5;-1\right);\left(5;-4\right);\left(-1;3\right);\left(-1;-3\right)\)
Ta có: \(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\) \((*)\)
\(*)\) Nếu \(x⋮3\Leftrightarrow x=3\left(x\in P\right)\) thay vào \((*)\) ta được:
\(3^2-1=2y^2=8\Leftrightarrow y=2\left(y\in P\right)\)
\(*)\) Nếu \(x\) \(⋮̸\) \(3\Leftrightarrow x\) có 2 dạng là \(\left[{}\begin{matrix}3k+1\\3k+2\end{matrix}\right.\) \(\left(k\in N\right)\)
\(-\) Với \(x=3k+1\) thì: \(2y^2=x^2-1=\left(x-1\right)\left(x+1\right)\)
\(=\left(3k+1-1\right)\left(3k+1+1\right)=3k\left(3k+2\right)\) \(⋮\) \(3\)
\(-\) Với \(x=3k+2\) thì: \(2y^2=x^2-1=\left(x-1\right)\left(x+1\right)\)
\(=\left(3k+2-1\right)\left(3k+2+1\right)\)
\(=\left(3k+1\right)\left(3k+3\right)=3\left(3k+1\right)\left(k+1\right)⋮3\)
Do đó \(\forall x\) \(⋮̸\) \(3\Leftrightarrow x^2-1⋮3\Rightarrow2y^2⋮3.\) Mà \(\left(2;3\right)=1\)
Nên \(y^2⋮3.\) Do \(y\in P\) \(\Leftrightarrow y⋮3\Leftrightarrow y=3\)
Thay \(y=3\) vào \((*)\) ta có:
\(x^2-1=2.3^2=18\Leftrightarrow x^2=19\Leftrightarrow x=\sqrt{19}\) (không thỏa mãn)
Vậy \(\left(x,y\right)=\left(3;2\right)\)
Câu hỏi của Huyền Anh Kute - Toán lớp 6 | Học trực tuyến