K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

a, Ta có: \(x^2-2x+1999=x^2-x-x+1+1998\)

\(=x\left(x-1\right)-\left(x-1\right)+1998\)

\(=\left(x-1\right)\left(x-1\right)+1998=\left(x-1\right)^2+1998\)

Do \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+1998\ge1998>0\)

Vậy đa thức \(x^2-2x+1999\) vô nghiệm

b, Ta có: \(x^2+3x+5=x^2+\dfrac{3}{2}.2x+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Vậy đa thức \(x^2+3x+5\) vô nghiệm

3 tháng 5 2017

a) x2 - 2x + 1999

= x2 - x - x + 1 + 1998

= x(x-1) -1(x-1) + 1998

= (x-1).(x-1) + 1998

= (x-1)2 + 1998. Vì (x-1)2\(\ge\)0 \(\forall\) x

\(\Rightarrow\)(x-1)2+1998 > 0 \(\forall\) x

Vậy đa thức trên vô nghiệm

b) x2 + 3x + 5

= x2 + \(\dfrac{3}{2}\)x + \(\dfrac{3}{2}\)x + \(\dfrac{9}{4}\)+ \(\dfrac{11}{4}\)

= x(x+\(\dfrac{3}{2}\)) + \(\dfrac{3}{2}\)(x+\(\dfrac{3}{2}\)) + \(\dfrac{11}{4}\)

= (x+\(\dfrac{3}{2}\)).(x+\(\dfrac{3}{2}\))+\(\dfrac{11}{4}\)

= (x+\(\dfrac{3}{2}\))2+\(\dfrac{11}{4}\). Vì (x+\(\dfrac{3}{2}\))2 \(\ge\) 0 \(\forall\) x

\(\Rightarrow\)(x+\(\dfrac{3}{2}\))2 +\(\dfrac{11}{4}\)> 0 \(\forall\) x

Vậy đa thức trên vô nghiệm.

chúc bn thi tốt!!!!!!!!!

24 tháng 12 2018

Bài 2 : phân tích các đa thức sau thành nhân tử

a, x3 - 2x2 + x

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b, x2 - 2x - y2 + 1

\(=x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

24 tháng 12 2018

vt mũ hộ mk đuy bạn :

\(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x^2-x\right)\left(x-1\right)\)

\(b,x^2-2x-y^2+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1+y\right)\left(x-1-y\right)\)

7 tháng 11 2016

C1

a) -7x(3x-2)=-21x^2+14x

b) 87^2+26.87+13^2=87^2+2.13.87+13^2=(87+13)^2=100^2

C2

a) (x-5)(x+5)

b)3x(x+5)-2(x+5)=(3x-2)(x+5)=0

\(\Rightarrow\left[\begin{array}{nghiempt}3x-2=0\\x+5=0\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{2}{3}\\x=-5\end{array}\right.\)

Vậy S={-5;2/3}

C3:

a)3x^3-2x^2+2=(x+1)(3x^2-5x-5)-3

b) Để A chia hết cho B=> x+1\(\inƯ\left(-3\right)\)

\(\Rightarrow\begin{cases}x+1=3\\x+1=-3\\x+1=1\\x+1=-1\end{cases}\)\(\Rightarrow\begin{cases}x=2\\x=-4\\x=0\\x=-2\end{cases}\)

7 tháng 11 2016

a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2

10 tháng 11 2017

1)

a) \(-7x\left(3x-2\right)\)

\(=-21x^2+14x\)

b) \(87^2+26.87+13^2\)

\(=87^2+2.87.13+13^2\)

\(=\left(87+13\right)^2\)

\(=100^2\)

\(=10000\)

2)

a) \(x^2-25\)

\(=x^2-5^2\)

\(=\left(x-5\right)\left(x+5\right)\)

b) \(3x\left(x+5\right)-2x-10=0\)

\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)

\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy..........

3)

a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)

Đại số lớp 8

Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)

b)

Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)

\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)

Đại số lớp 8

Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)

16 tháng 7 2023

a, \(x^2\) + 4\(x\) + 10

= ( \(x^2\) + 4\(x\) + 4) + 6

= (\(x\) + 2)2 + 6

vì (\(x\) + 2)2 ≥ 0 

⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)

b, \(x^2\) - 2\(x\) + 5

= (\(x^2\) - 2\(x\) + 1) + 4 

= (\(x\) - 1)2 + 4

Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0

Vậy đa thức đã cho vô nghiệm (đpcm)

12 tháng 9 2021

\(a,=6x^2+23x+21-\left(6x^2+23x-55\right)\\ =76\left(đpcm\right)\\ b,=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\\ =3\left(đpcm\right)\)

`@` `\text {dnv4510}`

`A)`

`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)

`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`

`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`

`= 3x^4+x^3-x^2+2x+7`

`B)`

`P(x)+M(x)=2Q(x)`

`-> M(x)= 2Q(x) - P(x)`

`2Q(x)=2(x^4+x^3-x^2+2x+1)`

`= 2x^4+2x^3-2x^2+4x+2`

`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`

`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`

`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`

`= 2x^3-2x^2+4x-4`

Vậy, `M(x)=2x^3-2x^2+4x-4`

`C)`

Thay `x=-4`

`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`

`= 2*(-64)-2*16-16-4`

`= -128-32-16-4`

`= -180`

`->` `x=-4` không phải là nghiệm của đa thức.

3 tháng 5 2023

thnk nha mik làm xong r

ha

5 tháng 5 2019

a)2x-1=0

=>\(x=\frac{1}{2}\)

b)\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=5\end{matrix}\right.\)

c)\(\Leftrightarrow x^2=2\)\(\Rightarrow x=\pm\sqrt{2}\)

5 tháng 5 2019

a, 2x-1=0

2x=1

x=\(\frac{1}{2}\)

b,(4x-3).(5+x)=0

th1:4x-3=0⇒4x=3⇒x=\(\frac{3}{4}\)

th2:5+x=0⇒x=-5

vậy nghiệm của đa thức trên là \(\frac{3}{4}\)và -5

c,\(x^2-2=0\Rightarrow\)\(x^2=2\Rightarrow x=\sqrt{2}\)⇒x=1 và -1

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?