GPT \(x^4+x^2-6x+9=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)
A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)
ĐK: \(x\ne-3,3,-2\)
Ta có: \(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{x^2+5x+6}-\frac{2}{x-3}=0\)
=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-9x^2+x^2-9}-\frac{3x+6}{x^2+3x+2x+6}-\frac{2}{x-3}=0\)
=>\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^2.\left(x^2-9\right)+\left(x^2-9\right)}-\frac{3x+6}{x.\left(x+3\right)+2.\left(x+3\right)}-\frac{2}{x-3}=0\)
=>\(\frac{13-x}{x+3}+\frac{6.\left(x^2+1\right)}{\left(x^2+1\right).\left(x^2-9\right)}-\frac{3.\left(x+2\right)}{\left(x+2\right).\left(x+3\right)}-\frac{2}{x-3}=0\)
=>\(\frac{13-x}{x+3}+\frac{6}{x^2-9}-\frac{3}{x+3}-\frac{2}{x-3}=0\)
=>\(\left(\frac{13-x}{x+3}-\frac{3}{x+3}\right)+\left(\frac{6}{x^2-9}-\frac{2}{x-3}\right)=0\)
=>\(\frac{13-x-3}{x+3}+\left[\frac{6}{x^2-9}-\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\right]=0\)
=>\(\frac{10-x}{x+3}+\left[\frac{6}{x^2-9}-\frac{2x+6}{x^2-9}\right]=0\)
=>\(\frac{10-x}{x+3}+\frac{6-2x-6}{x^2-9}=0\)
=>\(\frac{\left(10-x\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}+\frac{-2x}{x^2-9}=0\)
=>\(\frac{13x-x^2-30}{x^2-9}-\frac{2x}{x^2-9}=0\)
=>\(\frac{13x-x^2-30-2x}{x^2-9}=0\)
=>\(\frac{11x-x^2-30}{x^2-9}=0\)
Vì \(x\ne-3,3=>x^2\ne0\)
=>11x-x2-30=0
=>6x-30-x2+5x=0
=>6.(x-5)-x.(x-5)=0
=>(6-x).(x-5)=0
=>6-x=0=>x=6
hoặc x-5=0=>x=5
Vậy tập nghiệm của phương trình S=6; 5
\(x^3-6x^2-19x+84=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)-\left(28x-84\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)-28\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x-28\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2-3x-28=0\end{cases}}\)
Ta có : \(x^2-3x-28=0\)
\(\Leftrightarrow\left(x^2-7x\right)+\left(4x-28\right)=0\)
\(\Leftrightarrow x\left(x-7\right)+4\left(x-7\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{3;-4;7\right\}\)
@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.
ĐK:...
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))
\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)
\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
mình nghĩ đề vậy mới làm đc :))
\(x-2\sqrt{1-x}-4\sqrt{2x+4}+10=0\)
\(\Leftrightarrow1-x-2\sqrt{1-x}+1+2x+4-4\sqrt{2x+4}+4=0\)
\(\Leftrightarrow\left(\sqrt{1-x}-1\right)^2+\left(\sqrt{2x+4}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=1\\\sqrt{2x+4}=2\end{matrix}\right.\Rightarrow x=0\)
ý đề ra là tìm min nha mn
https://olm.vn/hoi-dap/tim-kiem?q=GPT+:+x4+x3-8x2-9x=9&id=203022