cho x-y=2. Tính giá trị của biểu thức :
A=3x2-5xy+2y-2y+2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: A=10x^2+5xy-6
Thay x=1 và y=2 thì
A=10*1^2+5*1*2-6
=10+10-6=14
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
có A=\(5xy^3\)+\(4x^2y^2\)-\(x^3y\)+2015=xy(\(5y^2+5xy-x^2\)) +2015=xy(\(5y^2+5xy-xy-x^2\)) +2015
=xy\(\left(\left(5y^2+5xy\right)-\left(xy+x^2\right)\right)\)=xy(5y(y+x)-x(x+y)) +2015 =xy(5y-x)(x+y)+2015=2015
dễ vậy thôi hc tốt nhé em!à nhớ k nhé thanks!
thay Y bang - X vao bieu thuc A thi ban co duoc phuong trinh:
A=-5xX^4+4xX^4+X^4+2015
A=0
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
\(P=x^3+x^2y-5x^2-x^2y-xy^2+5xy+3\left(x+y\right)+2000\\ =x^2\left(x+y-5\right)-xy\left(x+y-5\right)+3\left(x+y-5\right)+2015\\ =x^2\left(5-5\right)-xy\left(5-5\right)+3\left(5-5\right)+2015\\ =2015\)
`P = x^3 + x^2 - 5x^2 - x^2y + xy^2 + 5xy + 3(x+y) + 2000`
`P = x^2(x+y) - (x+y)x^2 - xy(x+y) + (x+y)xy + 3(x+y) + 2000`
`P = 0 + 0 + 3.5 + 2000`
`P = 2015`
Ta thấy \(4x^2+17xy+9y^2=5xy-\left|y-2\right|\)
\(\Leftrightarrow4x^2+12xy+9y^2=-\left|y-2\right|\Leftrightarrow\left(2x+3y\right)^2=-\left|y-2\right|\)
Do \(\left(2x+3y\right)^2\ge0;-\left|y-2\right|\le0\) nên dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}y-2=0\\2x+3y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=-3\end{cases}}\)
Thay vào M ta có \(M=\left(-3\right)^3+2.2+3.\left(-3\right)^2.2=31\)
\(A=3x^2-5xy+2y^2-2y+2012\)
\(=3x^2-3xy-2xy+2y^2-2y+2012\)
\(=\left(x-y\right)\left(3x-2y\right)-2y+2012\)
\(=6x-4y-2y+2012\)
\(=6\left(x-y\right)+2012\)
=12+2012=2024