Cho tam giác ABC có góc A =anpha ,AD là phân giác cạnh AC >AB .Vẽ tia Dx sao cho góc CDx cắt AC ở E.Chứng minh :
a/ AB.EC=DE.BC
b/ Tam giác BDE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nha
a) tam giác ABC đồng dạng với tam giác DEC vì
Góc C chung
Góc BAC= góc EDC
b) theo câu a ta có \(\frac{AB}{ED}=\frac{AC}{DC}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{ED}{DC}\)
Do AD là tia phân giác của góc BAC
suy ra \(\frac{BD}{DC}=\frac{AB}{AC}\)
Suy ra \(\frac{BD}{DC}=\frac{ED}{CD}\)
Vì cùng bằng\(\frac{AB}{AC}\)
Suy ra BD = DE
a) Xét ΔABC và ΔDEC có
\(\widehat{BAC}=\widehat{EDC}\)(gt)
\(\widehat{ACB}\) chung
Do đó: ΔABC∼ΔDEC(g-g)
MÌNH CŨNG KHÔNG BIẾT BẠN Ạ . cÔ MÌNH CHO GHI ĐỀ NHƯ VẬY Ạ !!
a) Xét hai tg ABD và AED có: AE = AB (gt)
góc BAD = góc EAD
AD chung
DO đó tg ADB = tg AED (c.g.c)
=> BD = DE
=> tam giác BDE cân tại D (đcpm)
b, BAE cân tại A có AI là đường phân giác => AI là đường cao => AIB = 90 độ
c, phân giác
a) Thấy 52=32+42 hay BC2=AB2+AC2
\(\Rightarrow\Delta ABC\) vuông tại A
b)Hình thì chắc bạn tự vẽ được nha
Xét 2\(\Delta ABH\) và\(\Delta DBH\) có:
AB=DB
\(\widehat{BAH}=\widehat{BDH}\)
BH chung
\(\Rightarrow\Delta ABH=\Delta DBH\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)
\(\Rightarrow\)BH là tia phân giác \(\widehat{ABC}\)
c)tam giác ABC đã có các cạnh có độ dài khác nhau nên tam giác ABC ko cân được đâu chị
a) Ta có :
-BC2=52=25(1)
-AB2+AC2=32+42=25(2)
-Từ (1)và(2)suy ra BC2=AB2+AC2
-do đó tam giác ABC vuông tại A(áp dụng định lý Py-ta-go đảo)
-vậy tam giác ABC là tam giác vuông .
b)Xét \(\Delta\) ABH(vuông tại A) và \(\Delta\) DBH(vuông tại D) có
-BH là cạnh huyền chung
-AB=BD(gt)
-Do đó:\(\Delta\) ABH=\(\Delta\) DBH(cạnh huyền-cạnh góc vuông)
\(\Rightarrow\)Góc ABH =Góc DBH(hai góc tương ứng)
Vậy BH là tia phân giác của góc ABC