Tìm x , biết
a) 36 x2 -49=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: (x2 - 36)(x2 -25)= 0
\(\Leftrightarrow\)(x2 - 62)(x2 - 52)= 0
\(\Leftrightarrow\)(x - 6)(x + 6)(x - 5)(x + 5)= 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\)
\(\orbr{\begin{cases}x-5=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
b) \(CMTT\)câu a
Ta có:\(\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
\(\orbr{\begin{cases}x=8\\x=-8\end{cases}}\)
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
a. Ta có 36/-84=-3/7
y/49=-3/7 suy ra y/49=-21/49 nên y=-21
Lại có: -15/x=36/-84 suy ra -15/x=-3/7 nên -15/x=-15/35 do đó x=35
Vậy x=35, y=-21
b, 3x-5 chia hết cho 3x+1 suy ra (3x+1)-6 chia hết cho 3x+1 nên 6 chia hết cho 3x+1
Vì x là số nguyên suy ra 3x+1 là số nguyên nên 3x+1 thuộc tập hợp ước của 6 gồm +-1, +-2, +-3, +-6
Từ đó tìm được gía trị của x thỏa mãn đề bài
c, (x-5).(y+1) <0 nên x-5 và y+1 phải khác dấu
TH1: x-5 <0 và y+1>0 suy ra x<5 và y>-1
TH2: x-5 >0 và y+1<0 suy ra x>5 và y<-1
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
\(36x^2-49=0\)
\(\Leftrightarrow36x^2=49\)
\(\Leftrightarrow x=\sqrt{\dfrac{49}{36}}=\dfrac{7}{6}\)
Vậy: \(x=\dfrac{7}{6}\)
\((6x)^2-7^2=0\)
(6x-7)(6x+7)=0
Th1 6x-7=0
X=7/6
Th2 6x+7=0
X=-7/6
Pt có tập nghiệm S=7/6;-7/6