K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2015

=> 6x2 - 10x = 10x - 6 

=> 6x2 - 20x + 6 = 0

=> 2(x - 3)(3x - 1) = 0

=> (x - 3)(3x - 1) = 0

=> x - 3 = 0 => x = 3

hoặc 3x - 1 = 0 => 3x = 1 => x = 1/3

Vậy x = 3 ; x = 1/3

 

24 tháng 10 2021

a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)

\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)

\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)

\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)

b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)

\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)

\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)

\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)

\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{3x^2-2x-9}{2x\left(x-5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-3x^2+2x+9}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-25+2x^2-12x-3x^2+2x+9}{2x\left(x-5\right)}\)

\(=\dfrac{-10x-16}{2x\left(x-5\right)}=\dfrac{-5x-8}{x\left(x-5\right)}\)

Bài 1:

Ta có: \(\left(3\sqrt{50}-5\sqrt{18}+3\sqrt{8}\right)\cdot\sqrt{2}\)

\(=\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\cdot\sqrt{2}\)

\(=6\sqrt{2}\cdot\sqrt{2}\)

=12

Bài 2: 

1) ĐKXĐ: \(x\le0\)

2) ĐKXĐ: \(x\le2\)

3) ĐKXĐ: \(x>\dfrac{-3}{2}\)

4) ĐKXĐ: x>0

5) ĐKXĐ: x<3

3 tháng 9 2018

\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)

để \(A\in Z\)

<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)

=> \(x-5\inƯ\left(9\right)\)

=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)

=> \(x\in\left(6;4;8;2;14;-4\right)\)

học tốt

20 tháng 5 2018

Chuyển vế->tìm x

a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)

\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)

\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)

 

c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)

\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)

\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)