cho tam giác ABC nhọn có AB>AC. Đường cao AH
a) Chứng minh HB>HC
b)CM C>B
c) So sánh BAH và CAH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!!!
a.
Ta có:
AB > AC (gt)
=> HB > HC (quan hệ giữa đường xiên và hình chiếu)
b.
Tam giác ABC có:
AB > AC (gt)
=> ACB > ABC (quan hệ giữa góc và cạnh đối diện trong tam giác)
c.
Tam giác ABH vuông tại H có: BAH + ABH = 90 => BAH = 90 - ABH
Tam giác ACH vuông tại H có: CAH + ACH = 90 => CAH = 90 - ACH
mà ACH > ABH (theo câu b)
=> BAH > CAH
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A
Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm
a, tính BC
b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC
c, chứng minh DE đi qua trung điểm cạnh BC
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
\(AB>AC\)(GT)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
Do đó \(\Rightarrow HB>HC\)(ĐPCM)
b) Áp dụng tính chất đường đồng quy trong tam giác vuông
....
C) Kẻ NK sao cho MN=MK
Xét \(\Delta MAN\)và \(\Delta MCK\)có :
\(MA=MC\left(gt\right)\)
\(\widehat{AMN}=\widehat{CMK}\)( đối đỉnh )
\(MN=MK\)
Do đó : \(\Rightarrow\Delta MAN=\Delta MCK\)(c-g-c)
\(\Rightarrow\widehat{A}=\widehat{MCK}\)( sole trong) (1)
Mà \(\widehat{MCK}=\widehat{ANM}\)(sole trong) (2_
Từ(1) và (2)
=> \(\widehat{A}=\widehat{ANM}\)
\(\Rightarrow\Delta MAN\)Cân (đpcm)
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A
a) Ta có : HB là hình chiếu của AB
HC là hình chiếu của AC
mà : AB>AC
\(\Rightarrow\)HB>HC
b)Xét \(\bigtriangleup\)ABC có :
AB>AC
\(\Rightarrow\)\(\widehat{C}\)>\(\widehat{B}\)( do đối diện nhau)