rút gọn biểu thức
r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: R=4x+5-4|x-5|
\(=4x+5-4\left(5-x\right)\)
\(=4x+5-20+4x\)
=8x-15
= 100-2x+(-20+74-12-2x)
= 100-2x+(42-2x)
= 100-2x+42-2x
= 142-2x
k mk nha
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
Khi x=4 thì \(4x^2-28x+49=\left(2x-7\right)^2=\left(2\cdot4-7\right)^2=1\)
Ta có: P=|3x-6|-3x+5
=3x-6-3x+5
=-1
Ta có: Q=|8-2x|+3x+8
=2x-8+3x+8
=5x
\(a,ĐK:x\ne\pm1;x\ne0\\ M=\dfrac{1-x+2x}{\left(1+x\right)\left(1-x\right)}:\dfrac{1-x}{x}\\ M=\dfrac{x+1}{\left(x+1\right)\left(1-x\right)}\cdot\dfrac{x}{1-x}=\dfrac{x}{\left(1-x\right)^2}\\ b,ĐK:x\ge0;x\ne4\\ N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ N=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Tất cả đều phải tìm điều kiện
\(P=\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{a-\sqrt{a}}\right):\dfrac{1}{\sqrt{a}-1}\)
\(=\left[\dfrac{\sqrt{a}}{\left(\sqrt{a}-1\right)\sqrt{a}}+\dfrac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}\right].\left(\sqrt{a}-1\right)\)
\(=\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\left(\sqrt{a}-1\right)=\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
\(\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}\)
Để biểu thức trên nhận giá trị âm khi \(\dfrac{\left(x-2\right)^2}{x^3-2x^2-4x+8}< 0\)
\(\Rightarrow x^3-2x^2-4x+8< 0\)do \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-2x\left(x+2\right)< 0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)^2< 0\Leftrightarrow x< -2\)
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
ĐKXĐ: x\(\ge0;x\ne9\)
=\(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Vậy...