K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

\(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< 1\)

Ta có :

\(B=\dfrac{2017^{2018}-2}{2017^{2019}-2}< \dfrac{2017^{2018}-2+2019}{2017^{2019}-2+2019}=\dfrac{2017^{2018}+2017}{2017^{2019}+2017}=\dfrac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\dfrac{2017^{2017}+1}{2017^{2018}+1}=A\)

Vậy B < A

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

19 tháng 5 2018

Giải:

Ta có:

\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

\(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)

Hay \(P=Q\)

Vậy ...

22 tháng 5 2018

bạn lm sai r

12 tháng 4 2018

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

10 tháng 4 2018

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

10 tháng 4 2018

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

8 tháng 8 2017

Ta có :

\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Ta thấy :

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)

từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

8 tháng 9 2018

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

8 tháng 10 2021

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

10 tháng 4 2022

A>B do A>4 cònB<4

13 tháng 7 2023

ngáo đá 😂