K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

\(x^4+2x^2+1\)

Ta có:

\(x^4=\left(x^2\right)^2\ge0 \)

\(2x^2=2\cdot x^2\\ x^2\ge0\\ \Rightarrow2x^2\ge0\)

\(x^4+2x^2\ge0\\ \Rightarrow x^4+2x^2+1\ge1\)

Vậy \(x^4+2x^2+1\) vô nghiệm

8 tháng 5 2021

x4+2x2+1 

Ta có :

x4 ≥ 0 ∀ x

x2 ≥ 0 ∀ x => 2x≥ 0 ∀ x

=> x4+2x2+1  ≥ 1 >0

Suy ra đa thức trên vô nghiệm

AH
Akai Haruma
Giáo viên
26 tháng 7 2021

Lời giải:
$2x^2+12x+19=2(x^2+6x+9)+1$

$=2(x+3)^2+1\geq 2.0+1=1>0$ với mọi $x\in\mathbb{R}$

Tức là $2x^2+12x+19\neq 0$ với mọi $x\in\mathbb{R}$

Vậy đa thức đó vô nghiệm.

26 tháng 7 2021

`2x^2+12x+19`

`=2(x^2+6x+19/2)`

`=2(x^2+2.x.3+9+1/2)`

`=2(x^2+2.x.3+3^2)+2.1 /2`

`=2(x+3)^2+1`

Ta thấy : `2(x+3)^2>=0`

`=>2(x+3)^2+1>=1>0`

Vậy đa thức đã cho vô nghiệm

17 tháng 8 2023

\(H\left(x\right)=2x^2-3x+\dfrac{10}{2}\)

\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+5\)

\(H\left(x\right)=x^2+x^2-2\cdot\dfrac{3}{2}\cdot x+\dfrac{9}{4}+\dfrac{11}{4}\)

\(H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Mà: \(x^2\ge0\forall x\) , \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\) và \(\dfrac{11}{4}>0\)

\(\Rightarrow H\left(x\right)=x^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall x\)

Vậy: \(H\left(x\right)\) là đa thức vô nghiệm

ko có nghiệm nguyên nha bạn

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM

7 tháng 5 2021

Ta có P(x) = x3 + 2x2 - 3x + 1

                 = 3x + 4x - 3x +1

                 =       4x + 1

Cho 4x + 1 =0

       4x       = -1

         x       =  -1/4 = -0,25

Vậy P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên là -0,25

a:ta có: \(2x^2\ge0\)

\(\Leftrightarrow2x^2+1>0\forall x\)

vậy: H(x) vô nghiệm

f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

NV
18 tháng 3 2023

\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)

\(\Rightarrow f\left(x\right)\) vô nghiệm