K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

C=\(\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{\left(x^4+3x^2\right)-\left(3x^3+9x\right)+\left(3x^2+9\right)}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3x\right)\left(x^2-3x+3\right)}=\dfrac{\left(x^2+3+3x\right)\left(x^2+3-3x\right)}{x^2+3-3x}=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}+3=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy Min C bằng \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

29 tháng 4 2017

Min C=\(\dfrac{3}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

23 tháng 8 2019

2. Ta có: A = x2 - 6x + 5 = (x2 - 6x + 9) - 4 = (x - 3)2 - 4 

Ta luôn có: (x - 3)2 \(\ge\)\(\forall\)x

=> (x - 3)2 - 4 \(\ge\)-4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3

Vậy MinA = -4 tại  x = 3

Ta có: B = 4x2 - 8x + 7 = 4(x2 - 2x + 1) + 3 = 4(x - 1)2 + 3

Ta luôn có: 4(x - 1)2 \(\ge\)\(\forall\)x

=> 4(x - 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1

vậy MinB = 3 tại x = 1

Ta có: C = 2x2 + 4x - 6 = 2(x2 + 2x + 1) - 8 = 2(x + 1)2 - 8

Ta luôn có: 2(x + 1)2 \(\ge\)\(\forall\)x

=> 2(x + 1)2 - 8 \(\ge\)-8 \(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinC = -8 tại x = -1

23 tháng 8 2019

1/

\(A=x^2-6x+5\)

\(A=x^2-2\cdot3x+3^2-3^2+5\)

\(A=\left(x-3\right)^2-3^2+5\)

\(A=\left(x-3\right)^2-9+5\)

\(A=\left(x-3\right)^2-4\)

mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-4\ge-4\)

\(\Rightarrow GTNNA\left(x^2-6x+5\right)=-4\)

với \(\left(x-3\right)^2=0;x=3\)

\(B=4x^2-8x+7\)

\(B=4\left(x^2-2x+\frac{7}{4}\right)\)

\(B=4\left(x^2-2\cdot1x+1-1+\frac{7}{4}\right)\)

\(B=4\left(x-1\right)^2+3\)

\(\left(x-1\right)^2\ge0\Rightarrow4\left(x^2-1\right)^2+3\ge3\)

\(\Rightarrow GTNNB=3\)

với \(\left(x-1\right)^2=0;x=1\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x-3\right)\)

\(C=2\left(x^2+2\cdot1x+1-1-3\right)\)

\(C=\left(x+1\right)^2-8\)

\(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow GTNNC=-8\)

với \(\left(x+1\right)^2=0;x=-1\)

23 tháng 8 2019

2.

c) \(C=2x^2+4x-6=2\left(x^2+2x+1\right)-8\)

\(=2\left(x+1\right)^2-8\ge-8\forall x\)

Dấu"=" xảy ra<=> \(2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

3.

c) \(C=-3x^2-6x+9=-3\left(x^2+2x+1\right)+12\)

\(=-3\left(x+1\right)^2+12\le12\forall x\)

Dấu "=" xảy ra<=> \(-3\left(x+1\right)^2=0\Leftrightarrow x=-1\)

23 tháng 8 2019

\(2,GTNN\)

\(A=x^2-6x+5=x^2+6x+9-4\)

\(=\left(x+3\right)^2-4\ge-4\)

\(A_{min}=-4\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)

\(B=4x^2-8x+7=4\left(x^2-2x+\frac{7}{4}\right)\)

\(=4\left(x^2-2x+1+\frac{3}{4}\right)=4\left(x-1\right)^2+3\ge3\)

\(\Rightarrow B_{min}=3\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)

\(C=2x^2+4x-6=2\left(x^2+2x-3\right)\)

\(=2\left(x^2+2x+1-4\right)=2\left(x+1\right)^2-8\ge-8\)

\(\Rightarrow C_{min}=-8\Leftrightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)

23 tháng 8 2019

\(3,GTLN\)

\(A=-x^2+2x-3=-\left(x^2-2x+3\right)\)

\(=-\left(x^2-2x+1-4\right)=-\left(x-1\right)^2+4\le4\)

\(A_{max}=4\Leftrightarrow-\left(x-1\right)^2=0\Rightarrow x=1\)

\(B=-9x^2+6x-4=-\left[9x^2-6x+4\right]\)

\(=-\left[\left(3x\right)^2-6x+1+3\right]=-\left(3x-1\right)^2-3\)

\(B_{max}=-3\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

\(C=-3x^2-6x+9=-3\left(x^2+2x-3\right)\)

\(=-3\left(x^2+2x+1-4\right)=-3\left(x+1\right)^2+12\)

\(C_{max}=12\Leftrightarrow-3\left(x+1\right)^2=0\Rightarrow x=-1\)

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4 

8 tháng 12 2021

MinC = 3/4 (khi x = -3/2)

9 tháng 12 2021

làm vầy làm mà gì nưa

 

26 tháng 9 2016

a)1
b)6,25
c)7
d)281/64
e)5

2 tháng 4 2018

a) Đặt A = \(3x^2+6x+4\)

\(A=3\left(x^2+2x+1\right)+1\)

\(A=3\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)

Vậy Min A =1 khi x = -1

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

NV
24 tháng 12 2020

\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)

\(\Leftrightarrow3x^2-6x+9\ge x+5\)

\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)

Dấu "=" xảy ra khi \(x=2\)

NV
24 tháng 12 2020

Có phát hiện ra lỗi sai trong bài làm trên ko? :D