K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Bài 1: Giải:

ta có : A=\(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Vậy Min A = \(\dfrac{3}{4}\)\(\Leftrightarrow x=-\dfrac{1}{2}\)

Bài 2:

ta có : m+3-m-2=5<0

Vậy m-2 < 3+m

C2 : ta có m-2 < 3+m

\(\Leftrightarrow\) m-2 -3-m <0

\(\Leftrightarrow\) 5< 0 là điều luôn đúng vậy

m-2<3+m \(\forall\) m

9 tháng 8 2015

các bạn giúp mình nhanh với :v

 

14 tháng 5 2015

a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)\(\geq\)0 với mọi m

Vậy: PT có 2 nghiệm x1, x2 với mọi m

b)Theo Vi-et: x1 + x= m và x1x= m - 1

Do đó: A = x1+ x2- 6x1x= (x+ x2)- 8x1x= m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m

đúng nhé

Vậy: GTNN của A là -8 <=> m = 4

20 tháng 2 2020

Câu a thay x=2 vào phương trình thì tìm được \(\orbr{\begin{cases}m=-\frac{3}{2}\\m=\frac{5}{2}\end{cases}}\)\

b)  m2x- 2(m+1).x +1 =0

\(\Delta=\left[-2\left(m+1\right)\right]^2-4m^2.1\)\(=4m^2+8m+4-4m^2=4\left(2m+1\right)\)

Phương trình có 2 nghiệm phân biệt khi và chỉ khi: \(\hept{\begin{cases}a\ne0\\\Delta>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2\ne0\\4\left(2m+1\right)>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne0\\m>-\frac{1}{2}\end{cases}}}\)

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết

2 tháng 2 2018

2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)

Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)

Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)