Có bạn nói rằng phân thức :
\(\dfrac{2x}{2x-2};\dfrac{1}{x^2-2x+1};\dfrac{5x^3}{\left(x-1\right)\left(x^2+1\right)}\)
có cùng điền kiện của biến x. Điều đó đúng hay sai ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2 x 2 x - 2 xác định khi 2x – 2 ≠ 0 ⇒ 2x ≠ 2 ⇒ x ≠ 1
1 x 2 - 2 x + 1 = 1 x - 1 2 xác định khi x - 1 2 ≠ 0 ⇒ x – 1 ≠ 0 ⇒ x ≠ 1
5 x 3 x - 1 x 2 + 1 xác định khi x - 1 x 2 + 1 ≠ 0 hay x – 1 ≠ 0
( vì với mọi x thì x 2 ≥ 0 nên x 2 + 1 > 0 )
Do đó, phân thức 5 x 3 x - 1 x 2 + 1 xác định với x ≠ 1.
Vậy các phân thức 2 x 2 x - 2 ; 1 x 2 - 2 x + 1 ; 5 x 3 x - 1 x 2 + 1 có cùng điều kiện biến x là đúng.
a) ĐK: \(x-5\ne0\Leftrightarrow x\ne5\)
b)
ĐK: \(\left(\dfrac{1}{2}x+4\right)\ne0\Leftrightarrow\dfrac{1}{2}x\ne-4\\ \Leftrightarrow x\ne-8\)
c)ĐK:
\(-2x-10\ne0\\ \Leftrightarrow-2x\ne10\\ \Leftrightarrow x\ne-5\)
a) ĐKXĐ: \(x\ne5\)
b) ĐKXĐ: \(x\ne-8\)
c) ĐKXĐ: \(x\ne-5\)
\(a,ĐK:x\ne1;x\ne-1\\ b,C=\dfrac{x^2+x+x^2+1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2x^2+2x+1}{2x^2-2}\\ c,C=-\dfrac{1}{2}\Leftrightarrow2-2x^2=2x^2+2x+1\\ \Leftrightarrow4x^2+2x-1=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}-1}{4}\\x=\dfrac{-\sqrt{5}-1}{4}\end{matrix}\right.\\ d,C>0\Leftrightarrow2x^2-2>0\left(2x^2+2x+1>0\right)\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
Câu b rút gọn C sai rồi, phải là \(\dfrac{1}{2\left(x+1\right)}\) chứ.
`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`
`<=>x ne 4,x me -1`
`b,ĐKXĐ:4x^2-25 ne 0`
`<=>(2x-5)(2x+5) ne 0`
`<=>x ne +-5/2`
`c,ĐKXĐ:8x^3+27 ne 0`
`<=>8x^3 ne -27`
`<=>2x ne -3`
`<=>x ne -3/2`
`d,2x+2 ne 0,4y^2-9 ne 0`
`<=>2x ne -2,(2y-3)(2y+3) ne 0`
`<=>x ne -1,y ne +-3/2`
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)
cho mình hỏi là giữa khác phân số với nhua là phải có dấu như là công, trừ, nhân hay chia chứ?
a: \(A=\dfrac{x-1+2x^2+2x+2-x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)
Phân thức: \(\dfrac{2x}{2x-2}\)
ĐKXĐ: \(x\ne1\)
Phân thức: \(\dfrac{1}{x^2-2x+1}=\dfrac{1}{\left(x-1\right)^2}\)
ĐKXĐ: \(x\ne1\)
Phân thức: \(\dfrac{5x^3}{\left(x-1\right)\left(x^2+1\right)}\)
ĐKXĐ: \(x\ne1\)
Vậy các phân thức : \(\dfrac{2x}{2x-2};\dfrac{1}{x^2-2x+1};\dfrac{5x^3}{\left(x-1\right)\left(x^2+1\right)}\)
có cùng điều kiện của biến x là \(x\ne1\)
\(2x-2\ne0\) khi \(x\ne1;x^2-2x+1=\left(x-1\right)^2\ne0\) khi \(x\ne1,\left(x-1\right)\left(x^2+1\right)\ne0\) khi \(x\ne1\). Vậy biến \(x\) trong ba phân thức này có cùng một điều kiện \(x\ne1\) là đúng.