Phân tích mẫu thức của các phân thức sau thành nhân tử rồi tìm điều kiện của x để giá trị của phân thức xác định :
a) \(\dfrac{5}{2x-3x^2}\)
b) \(\dfrac{2x}{8x^3+12x^2+6x+1}\)
c) \(\dfrac{-5x^2}{16-24x+9x^2}\)
d) \(\dfrac{3}{x^2-4y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{3}{x^2-4y^2}\)
\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)
Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)
2) \(\frac{2x}{8x^3+12x^2+6x+1}\)
\(=\frac{2x}{\left(2x+1\right)^3}\)
Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)
\(\Rightarrow2x+1\ne0\)
\(\Rightarrow x\ne-\frac{1}{2}\)
3) \(\frac{5}{2x-3x^2}\)
\(=\frac{5}{x\left(2-3x\right)}\)
Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)
`a,x^3-8 ne 0`
`=>x^3 ne 8`
`=>x ne 2`
`b,2x^2+5x+3 ne 0`
`=>2x^2+2x+3x+3 ne 0`
`=>2x(x+1)+3(x+1) ne 0`
`=>(x+1)(2x+3) ne 0`
`=>x ne -1,-3/2`
`c,x^2-4 ne 0`
`=>x^2 ne 4`
`=>x ne 2,-2`
a) ĐK:
\(x^3-8\ne0\\ \Leftrightarrow x\ne2\)
b) ĐK:
\(2x^2+5x+3\ne0\\ \Leftrightarrow\left[{}\begin{matrix}x\ne-1\\x\ne-\dfrac{3}{2}\end{matrix}\right.\)
c) ĐK:
\(x^2-4\ne0\\ \Leftrightarrow x\ne\pm2\)
a: ĐKXĐ: x<>0; x<>-1
b: E=5(x+1)/2x(x+1)=5/2x
b: Để E=1 thì 5/2x=1
=>2x=5
=>x=5/2
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`
`<=>x ne 4,x me -1`
`b,ĐKXĐ:4x^2-25 ne 0`
`<=>(2x-5)(2x+5) ne 0`
`<=>x ne +-5/2`
`c,ĐKXĐ:8x^3+27 ne 0`
`<=>8x^3 ne -27`
`<=>2x ne -3`
`<=>x ne -3/2`
`d,2x+2 ne 0,4y^2-9 ne 0`
`<=>2x ne -2,(2y-3)(2y+3) ne 0`
`<=>x ne -1,y ne +-3/2`
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)
Bài 1:
a) ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
b) Ta có: \(A=\dfrac{5x+5}{2x^2+2x}\)
\(=\dfrac{5\left(x+1\right)}{2x\left(x+1\right)}\)
\(=\dfrac{5}{2x}\)
c) Để A=1 thì \(\dfrac{5}{2x}=1\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)(thỏa ĐK)
Vậy: Để A=1 thì \(x=\dfrac{5}{2}\)