cho:
A=\(\dfrac{1.3.5....99}{2.4.6.....100}\) CMR: A2<1/101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\cdot3\cdot5\cdot...\cdot99=\dfrac{\left(1\cdot3\cdot5\cdot...\cdot99\right)\cdot\left(2\cdot4\cdot6\cdot...\cdot100\right)}{2\cdot4\cdot6\cdot...\cdot100}\)
\(=\dfrac{1\cdot3\cdot5\cdot...\cdot2\cdot4\cdot6\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot50\cdot2\cdot2\cdot...\cdot2}=\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}\)
Lời giải:
Sử dụng quy nạp:
Với \(n=1\Rightarrow \frac{1}{2}< \frac{1}{\sqrt{3}}\) (đúng)
Với \(n=2\Rightarrow \frac{1.3}{2.4}< \frac{1}{\sqrt{5}}\) (đúng)
.............
Giả sử bài toán đúng với \(n=k\), tức là :
\(\frac{1.3.5...(2k-1)}{2.4.6...2k}< \frac{1}{\sqrt{2k+1}}\) (*)
Ta cần chỉ ra nó cũng đúng với \(n=k+1\) hay :
\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\). Thật vậy, theo (*) ta có:
\(\frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+1}}.\frac{2k+1}{2k+2}=\frac{\sqrt{2k+1}}{2k+2}\) (1)
Xét \(\frac{\sqrt{2k+1}}{2k+2}-\frac{1}{\sqrt{2k+3}}=\frac{\sqrt{(2k+1)(2k+3)}-(2k+2)}{(2k+2)\sqrt{2k+3}}\) \(=\frac{-1}{[\sqrt{(2k+1)(2k+3)}+(2k+2)](2k+2)\sqrt{2k+3}}<0\)
Suy ra \(\frac{\sqrt{2k+1}}{2k+2}< \frac{1}{\sqrt{2k+3}}(2)\)
Từ \((1);(2)\Rightarrow \frac{1.3.5....(2k-1)(2k+1)}{2.4.6....(2k)(2k+2)}< \frac{1}{\sqrt{2k+3}}\)
Vậy bài toán đúng với \(n=k+1\), phép quy nạp hoàn thành.
Do đó ta có đpcm.
Ta có:
\(\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}\\ =\dfrac{51\cdot52\cdot...\cdot100}{2^{50}}\\ =\dfrac{\left(1\cdot2\cdot...\cdot50\right)\left(51\cdot52\cdot...\cdot100\right)}{\left(1\cdot2\cdot...\cdot50\right)\cdot2^{50}}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot100}{2\cdot4\cdot6\cdot...\cdot100}\\ =1\cdot3\cdot5\cdot...\cdot99\)
Cho M=1/2*2/3..............*99/100
N=2/3*3/4*...................*100/101
CMR : M<N
Tính: M*N
CMR;M<1/10
\(S=1.3.5...99+2.4.6...98\)
Ta thấy :
\(1.3.5...99\) có chữ số tận cùng là 5 (vì trong dãy số lẻ này có số 5 và trong dãy số không có chữ số là bội của 4 và chữ số 0)
\(2.4.6...98\) có chữ số tận cùng là 0 (vì trong dãy số chẵn này có chữ số 0)
\(\Rightarrow S=1.3.5...99+2.4.6...98\) có chữ số tận cùng là \(5+0=5\)
Tích của các thừa số lẻ là số lẻ. Trong tích có thừa số có chữ số tận cùng là 5 thì tích có chữ số tận cùng là 5
=> 1.3.5....99 có chữ số tận cùng là 5
Trong 1 tích nếu có 1 thừa số có chữ số tận cùng là 0 thì tích có chữ số tận cùng là 0
=> 2.4.6....98 có chữ số tận cùng là 0
=> S có chữ số tận cùng là 5
Từ 1->100 có:100-1+1=100 (thừa số)
Mà \(\frac{1}{2};\frac{3}{4};\frac{5}{6};.....;\frac{99}{100}\) là những p/s có tử và mẫu là 2 số liên tiếp
=>từ \(\frac{1}{2}\rightarrow\frac{99}{100}\) có : 50 thừa số
=>M có 50 thừa số
Từ 2->101 có:101-2+1=100 (thừa số)
=>từ \(\frac{2}{3}\rightarrow\frac{100}{101}\) có: 50 thừa số
=>N có 50 thừa số
Do đó mỗi biểu thức M,N đều có 50 thừa số
Mà \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};......;\frac{99}{100}< \frac{100}{101}\)
=>\(M=\frac{1}{2}.\frac{2}{3}.......\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.........\frac{100}{101}\)
Vậy M<N
Ta có: 2.4.6...100<3.5.7...101
=>\(A^2< \left(\dfrac{1\cdot3\cdot5...99}{3\cdot5\cdot7...101}\right)^2=\left(\dfrac{1}{101}\right)^2< \dfrac{1}{101}\)
Vậy \(A^2< \dfrac{1}{101}\)
mẫu lớn hơn thì phân số bé hơn mà