K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

\(E=\left|3x-1\right|+\left|2x-1\right|+\left|x-1\right|=\left|3x-1\right|+\left|1-2x\right|+\left|x-1\right|\)

Theo BĐT chứa dấu GTTĐ : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|x+1\right|=\left|x\right|+\left|-x-1\right|\)

\(\ge\left|x-x-1\right|=\left|-1\right|=1\)

Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(-x-1\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};-1\le x\le0\Leftrightarrow-1\le x\le\frac{1}{2}\)

Vậy GTNN của E bằng 1 tại -1 =< x =< 1/2 

18 tháng 8 2021

sai dòng 3 rồi nhé, mình sửa bài 

\(E\ge\left|3x-1+1-2x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)

Dấu ''='' xảy ra khi \(\left(3x-1\right)\left(1-2x\right)\ge0;x\left(1-x\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{1}{2};0\le x\le1\Leftrightarrow0\le x\le1\)

Vậy GTNN của E bằng 1 tại 0 =< x =< 1

23 tháng 8 2021

a, \(A=\left|x-1\right|+\left|x+1\right|+\left|x-2\right|+\left|x-3\right|\ge\left|1-x+x+1\right|+\left|2-x+x-3\right|=3\)

Dấu ''='' xảy ra khi \(\left(1-x\right)\left(x+1\right)\ge0;\left(2-x\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le1;2\le x\le3\Leftrightarrow-1\le x\le3\)

Vậy GTNN của A bằng 3 tại -1 =< x =< 3 

b, \(B=\left|x+1\right|+\left|x-1\right|+\left|2x-5\right|\ge\left|x+1+x-1\right|+\left|2x-5\right|\)

\(=\left|2x\right|+\left|2x-5\right|=\left|2x\right|+\left|5-2x\right|\ge\left|2x+5-2x\right|=5\)

Dấu ''='' xảy ra khi \(\left(x+1\right)\left(x-1\right)\ge0;2x\left(5-2x\right)\ge0\Leftrightarrow;0\le x\le\frac{5}{2}\)

Vậy GTNN của B bằng 5 tại 0 =< x =< 5/2 

26 tháng 7 2021

\(\left|3x-1\right|=\left|2x+5\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x+5\\3x-1=-\left(2x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Vậy...

26 tháng 7 2021

cảm ơn bạn nhìu:)))

 

12 tháng 9 2017

\(T=\left|x-1\right|+\left|x+3\right|+\left|x-3\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) đấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :

\(T=\left|x-1\right|+\left|x+3\right|+\left|3-x\right|\ge\left|x-1\right|+\left|x+3+3-x\right|=\left|x-1\right|+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(x+3\right)\left(3-x\right)\ge0\end{cases}\Rightarrow x=1\left(TM\right)}\)

Vật \(T_{min}=6\) tại x = 1