K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

\(C=x-\sqrt{x-2009}=\left(\sqrt{x-2009}-\dfrac{1}{2}\right)^2+2008,75\ge2008,75\)

19 tháng 9 2019

ĐK: \(x\ge2009\)

Khi đó :

\(C=x-2009-2.\sqrt{x-2009}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+2009\)

\(=\left(\sqrt{x-2009}-\frac{1}{2}\right)^2+\left(2009-\frac{1}{4}\right)\)

\(=\left(\sqrt{x-2009}-\frac{1}{2}\right)^2+\frac{8035}{4}\ge\frac{8035}{4}\)

Dấu "=" xảy ra <=> \(\sqrt{x-2009}-\frac{1}{2}=0\)

<=> \(x-2009=\frac{1}{4}\)

<=> \(x=2009+\frac{1}{4}=\frac{8037}{4}\)( tm).

Vật min C = 8035/4 đạt tại x = 8037/4 .

19 tháng 9 2019

ĐK: \(x\ge2009\)

Xét a > 0. Ta có:

\(C=x-\frac{1}{2\sqrt{a}}.2\sqrt{a\left(x-2009\right)}\ge\frac{2\sqrt{a}.x-a-x+2009}{2\sqrt{a}}\)(cô si xong rồi quy đồng)

\(=\frac{\left(2\sqrt{a}-1\right)x-a+2009}{2\sqrt{a}}\). Ta tìm a sao cho \(2\sqrt{a}-1=0\Leftrightarrow a=\frac{1}{4}\)

Giờ thay ngược cái a vào bên trên là ra:D

P/s: Is that true?

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

14 tháng 12 2023

Sửa đề: Tìm giá trị lớn nhất

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)

\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}< =-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>\(C< =0\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

14 tháng 12 2023

Sửa đề: Tìm x để C đạt GTLN

 

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)

\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}< =-\dfrac{2}{2}=-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>C<=0 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Vậy: \(C_{max}=0\) khi x=0

22 tháng 7 2021

ĐK: `x-4>=0 <=>x>=4`

`\sqrt(x-4)>=0 forall x`

`<=>\sqrt(x-4)-2>=-2`

`=> (\sqrt(x-4)-2)_(min) =-2<=> x=4`

P=(√x+3√x+2+4x√x+3x+9x−√x−6):(√x√x+3+2√x+3x+5√x+6)

=[(√x+3)(√x−3)(√x+2)(√x−3)+4x√x+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]

=x−9+4x√x+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)

=4x√x+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)

=4x(√x+1)(√x−3)(√x+1)=4x√x−3

b/ P=48⇔4x√x−3=48

⇔4x=48√x−144

⇔4x−48√x+144=0

⇔(2√x−12)2=0

⇔2√x−12=0⇔√x=6⇔x=36(TM)

Vậy................

13 tháng 1 2022
Cái gì ê? Chẳng hiểu?
31 tháng 7 2017

x-2* căn(x-2)+3.tìm gtnn.

Ta có: \(\left|x-2\right|\ge x-2\)

          \(\left|x-3\right|\ge0\)

          \(\left|x-4\right|=\left|4-x\right|\ge4-x\)

\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2\ge0\\x-3=0\\x-4\le0\end{cases}\Rightarrow}x=3\)