Cho đa thức Q(x) thỏa mãn: 2.Q(x) + 3.Q(-x) + x^2 với mọi x thuộc R . Tính Q(-1) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 0, ta có (0) = Q(0) + Q(1). (/)
Với x = 1, ta có (1) = Q(1) + Q(0). (**)
Từ (*) và (**) ta có: P(0) = P(1)
Giả sử P(x) = anx2 + an - 1xn - 1 + ... + a1x1 + ao (a1 là các số nguyên không âm; i = 1 -> n)
Vì P(1) = 0 nên: an + an - 1 + ... + a1 + ao = 0
Mà: an; an - 1; ... ; a1; ao là các số nguyên không âm nên an = an - 1 = .... = a1 = ao = 0
=> (x) = 0 => P(P(3))=0.
thế @Trần Khánh Linh ai cần bạn xin lỗi đâu mà bạn Thái viết nam hỏi học sinh lớp 7 chứ phải lớp 5 đâu mà bạn xía vào làm gì
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Q(-1)=2.(-1)+3.(-1)+(-1)^2
Q(-1)=(-2)+(-3)+1
Q(-1)=-4
đúng chưa bạn nếu đúng thì cho mình làm quen nhé