K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đường tròn

30 tháng 6 2017

bạn ko chứng minh ABDC là hình thang ak?

16 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = AH và BD = BH

Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH

Suy ra: AC + BD = AH + BH = AB không đổi

5 tháng 10 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

- MA là tia phân giác của góc HMC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy C, M, D thẳng hàng.

14 tháng 12 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AC ⊥ CD và BD ⊥ CD (tính chất tiếp tuyến)

Suy ra: AC // BD hay tứ giác ABDC là hình thang

Mà OA = OB (bán kính (O))

Và AC = MD (bán kính (M))

Suy ra OM là đường trung bình của hình thang ABDC

Khi đó OM // AC. Suy ra: OM ⊥ CD hay góc (OMI) = 90 °

Tam giác OMI vuông tại M có MH ⊥ OI

Theo hệ thức lượng trong tam giác vuông ta có: O M 2  = OH.OI

Suy ra: OH.OI =  R 2  không đổi.

a: Xét tứ giác ABNM có

AM//BN

góc AMN=90 độ

Do đó: ABNM là hình thang vuông

b: AM//CO

=>gó MAC=góc OCA=góc OAC

=>AC là phân giác của góc BAM

a: Xét tứ giác ABNM có

AM//BN

góc AMN=90 độ

=>ABNM là hình thang vuông

b: AM//CO

=>góc MAC=góc OCA

=>góc MAC=góc OAC

=>AC là phân giác của góc BAM

28 tháng 12 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90 °

Tam giác ABC vuông tại C có CH ⊥ AB

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

C H 2 = HA.HB     (3)

Xét hai tam giác ACH và ACE, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CE (tính chất đường phân giác)

AC chung

Suy ra : ∆ ACH =  ∆ ACE (cạnh huyền, cạnh góc vuông)

Suy ra: AH = AE     (4)

Xét hai tam giác BCH và BCF, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CF (= CE)

BC chung

Suy ra:  ∆ BCH =  ∆ BCF (cạnh huyền, cạnh góc vuông)

Suy ra: BH = BF     (5)

Từ (3), (4) và (5) suy ra:  C H 2  = AE.BF