Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Gọi CD là tiếp tuyến chung ngoài của hai đường tròn \(\left(C\in\left(O\right),D\in\left(O'\right)\right)\)
a) Tính số đo góc CAD
b) Tính độ dài CD biết OA = 4,5, O'A = 2cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ tiếp tuyến chung tạ IA cắt CD tại M
Trong đường tròn (O) ta có:
MA = MC (tính chất hai tiếp tuyến cắt nhau)
Trong đường tròn (O’) ta có :
MA = MD (tính chất hai tiếp tuyến cắt nhau)
Suy ra : MA = MC = MD = 12 CD
Tam giác ACD có đường trung tuyến AM ứng với cạnh CD bằng nửa cạnh CD nên tam giác ACD vuông tại A
Suy ra :
Hướng dẫn giải:
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có IA=IB=IC=12BCIA=IB=IC=12BC.
Do đó tam giác ABC vuông tại A
⇒ˆBAC=90∘⇒BAC^=90∘.
b) Ta có ˆI1=ˆI2;ˆI3=ˆI4I^1=I^2;I^3=I^4 (tính chất hai tiếp tuyến cắt nhau).
Do đó ˆOIO′=90∘OIO′^=90∘ (hai tia phân giác của hai góc kề bù).
c) Ta có AI⊥OO′AI⊥OO′.
Xét tam giác OIO' vuông tại I, ta có:
IA2=OA⋅O′A=9⋅4=36⇒IA=6.IA2=OA⋅O′A=9⋅4=36⇒IA=6.
Do đó BC=12cm.
Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.
a) Theo tính chất của hai tiếp tuyến cắt nhau ta có .
Do đó tam giác ABC vuông tại A
.
b) Ta có (tính chất hai tiếp tuyến cắt nhau).
Do đó (hai tia phân giác của hai góc kề bù).
c) Ta có .
Xét tam giác OIO' vuông tại I, ta có:
Do đó BC=12cm.
Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.
b)ME.MO = MA2 (hệ thức lượng trong MAO vuông)
MF.MO’ = MA2 (hệ thức lượng trong MAO’ vuông)
Suy ra ME.MO = MF.MO’
c)Đường tròn có đường kính BC có tâm M, bán kính MA.OO’ vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).
d)Hình b
Gọi I là trung điểm của OO’, I là tâm của đường tròn có đường kính OO’, IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO’. IM là đường trung bình của hình thang OBCO’ nên IM // OB // O’C. Do đó IM ⊥ BC.
BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).
Gọi giao điểm của O1O2 và CD là I.
Ta thấy rằng \(\Delta O_1CI\sim\Delta O_2DI\) theo tỉ số đồng dạng là \(k=\frac{O_1C}{O_2D}=\frac{5}{2}\)
Đặt \(ID=2x\left(cm\right)\Rightarrow IC=5x\Rightarrow CD=7x\Rightarrow AB=1,5.7x=10,5x\)
Theo Pitago ta cũng có \(O_1I=\sqrt{25x^2+25};O_2I=\sqrt{4x^2+4}\left(1\right)\)
Xét hình thang vuông ABO2O1 , kẻ O2H vuông góc với AO1 , ta tính được \(HO_1=5-2=3\left(cm\right)\)
Vậy thì \(O_1O_2^2=O_2H^2+HO_1^2\Rightarrow O_1O_2=\sqrt{110,25x^2+9}\left(2\right)\)
Từ (1) và (2) suy ra \(\sqrt{110,25x^2+9}=\sqrt{25x^2+25}+\sqrt{4x^2+4}\)
\(\Leftrightarrow\sqrt{110,25x^2+9}=5\sqrt{x^2+1}+2\sqrt{x^2+1}\)
\(\Leftrightarrow\sqrt{110,25x^2+9}=7\sqrt{x^2+1}\)
\(\Leftrightarrow110,25x^2+9=49x^2+49\)
\(\Leftrightarrow x^2=\frac{32}{49}\Rightarrow O_1O_2=7.\sqrt{\frac{32}{49}+1}=9\left(cm\right)\)
Vậy O1O2 = 9 cm.