K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

câu 1

ta có BD là phân giác tam giác ABC

suy ra AB phần BC bằng AD phần DC bằng 3 phần 2 mà AD cộng DC bằng 6

suy ra AD bằng 6 nhân 3 chia 5 bằng 18 phần 5

xét tam giác ABD và tam giác ACE có

góc A chung

góc ABD bằng góc ACE

vậy tam giác ABD đồng dạng tam giác ACE (g-g)

suy ra AB phần AD bằng AC phần AE

mà góc A chung

vậy tam giác AED đồng dạng tam giác ACB(c-g-c)

suy ra AD phần ED bằng AB phần BC

thế số vào ta được ED bằng 12 phần 5

câu 2 lỡ chứng minh trên rùi

câu 3xét tam giác BEI và tam giác CDI có

góc EBI bằng góc DCI

góc EIB bằng góc DIC ( đối đỉnh )

vậy tam giác BEI đồng dạng tam giác CDI (g-g)

suy ra BE phần IE bằng CD phần ID

tương đương IE nhân CD bằng ID nhân BE

câu cuối

ta có tam giác AED phần tam giác ABC bằng k bình phương

Tam giác AED phần tam giác ABC bằng AD phần AB tất cả bình phương

tương đương AD bình chia cho AB bình băng 9 phần 25 tức là AD chiếm 9 phần AB chiếm 25 phần

ta lấy 6 nhân 9 chia 25 bằng 54 phần 25

A B C H D K

A C B H K D

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuong tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABI và ΔCBD có 

\(\widehat{ABI}=\widehat{CBD}\)

\(\widehat{BAI}=\widehat{BCD}\)

Do đó: ΔABI\(\sim\)ΔCBD

15 tháng 3 2017

Hình vẽ:

I K C A B

Giải:

a/ Xét \(\Delta ACI\)\(\Delta BCI\) có:

AI: chung

\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)

AC = BC (gt)

=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)

=> AI = BI (c t/ứng)(đpcm)

b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)

\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)

\(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)

=> \(\widehat{AIC}=\widehat{BIC}=90^o\)

=> CI _l_ AB

Vì AI = BI mà AB = 6

=> AI = BI = 3

Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)

hay \(CI^2+3^2=5^2\)

\(\Rightarrow CI^2=5^2-3^2=16\)

\(\Rightarrow CI=4\left(cm\right)\)

c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\)\(\Delta BCK\) có:

AK: chung

AC = BC (gt)

=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)

=> CK là tia p/g của góc ACB (1)

Lại có: CI là tia p/g của góc ACB (gt)

=> CK trùng CI

=> 3 điểm C, I, K thẳng hàng (đpcm)