Phân tích thành nhân tử :
a) \(4x^2-y^2+4x+1\)
b) \(x^3-x+y^3-y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(4x^2-y^2+4x+1\)
= \(\left(4x^2+4x+1\right)-y^2=\left(2x+1\right)^2-y^2=\left(2x+1+y\right).\left(2x+1-y\right)\)
b ) \(x^3-x+y^3-y\)
= \(\left(x^3+y^3\right)-\left(x+y\right)\)
= \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
= \(\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
Chúc bạn học tốt !!!
\(a.\)\(4x^2-y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+1+y\right)\left(2x+1-y\right)\)
a)\(4x^2-y^2+4x+1=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2\)
\(=\left(2x+1-y\right)\left(2x+1+y\right)\)
b)\(x^3-x+y^3-y=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
a) = ( 4x2 + 4x + 1 ) - y2
= ( 2x +1)2 - y2
= ( 2x + 1 - y) ( 2x + 1+ y )
b) = ( x3 + y3) - ( x + y)
= (x + y) (x2+xy+y2) - (x + y)
= ( x +y ) (x2 + xy + y2 - 1 )
a) 4x2 -(y2+4x+1)=(2x)2-(y+1)2+(2x+y+1)(2x-y+1)
b) x3-x+y3-y=(x3-x)(y3-y)+x(x2-1)+y(y2-1)
Tớ chưa chắc câu B0 đúng đâu nhé :)))
a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)
d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)
Câu hỏi của Thuỳ Dương Đặng - Toán lớp 8 - Học toán với OnlineMath
Tham khảo trước đi :v
\(x^2+4x+4=\left(x+2\right)^2 \)
\(4x^2-4x+1=\left(2x-1\right)^2\)
\(c\left(x+1\right)-y\left(x+1\right)=\left(x+1\right)\left(c-y\right)\)
\(x^3-3x^2+3x-1+27y^3=\left(x-1\right)^3+27y^3=\left(x-1+3y\right)\left(x^2-2x+1-3xy+3y+9y^2\right)\)
a) 4x2 - y2 + 4x + 1 = 4x2 + 4x + 1 - y2
= ( 2x + 1 ) 2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
b) x3 - x + y3 - y = x3 + y3 - x - y
= ( x + y ) ( x2 - xy + y2 ) - ( x + y )
= ( x + y ) ( x2 - xy + y2 - 1 )
a. 4x2−y2+4x+14x2−y2+4x+1 =(4x2+4x+1)−y2=(2x+1)2−y2=(4x2+4x+1)−y2=(2x+1)2−y2
=(2x+1+y)(2x+1−y)=(2x+1+y)(2x+1−y)
b. x3−x+y3–yx3−x+y3–y =(x3+y3)−(x+y)=(x+y)(x2−xy+y2)−(x+y)=(x3+y3)−(x+y)=(x+y)(x2−xy+y2)−(x+y)
=(x+y)(x2−xy+y2−1)