\(\dfrac{1}{49}+\dfrac{49}{1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
Ta có:
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\left(1+1+...+1\right)\)(có 49 chữ số 1)
P= \(\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
P= \(\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
P= \(50.\left(\dfrac{1}{50}+\dfrac{1}{49}+...+\dfrac{1}{2}\right)\)
⇒ \(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}}{50.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)}\)
⇒ \(\dfrac{S}{P}=\dfrac{1}{50}\)
Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)
quên đề mất
đề:thực hiện phép tính theo cách hớp lí(nếu có thể)
CẢM ƠN TRƯỚC
bài này bằng 0 đó bạn
trong chỗ... sẽ có 1/49 trừ 1/72 (=0)
nên cả tích đó bằng 0
bạn tự tình bài nha
\(\dfrac{1}{\sqrt{49+20\sqrt{6}}}-\dfrac{1}{\sqrt{49-20\sqrt{6}}}+\dfrac{1}{\sqrt{7-4\sqrt{3}}}\)
\(=\dfrac{1}{\sqrt{5^2+2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{5^2-2\cdot2\sqrt{6}\cdot5+\left(2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{2^2-2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{\sqrt{\left(5+2\sqrt{6}\right)^2}}-\dfrac{1}{\sqrt{\left(5-2\sqrt{6}\right)^2}}+\dfrac{1}{\sqrt{\left(2-\sqrt{3}\right)^2}}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{5-2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}-\dfrac{5+2\sqrt{6}}{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}+\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{1}+\dfrac{2+\sqrt{3}}{1}\)
\(=-4\sqrt{6}+2+\sqrt{3}\)
\(=\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}+\dfrac{1}{2-\sqrt{3}}\)
\(=5-2\sqrt{6}-5-2\sqrt{6}+2+\sqrt{3}\)
\(=2-4\sqrt{6}+\sqrt{3}\)
\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
\(\dfrac{1}{49}+\dfrac{49}{1}\) \(=\) \(\dfrac{1}{49}+49=49\dfrac{1}{49}\)