Cho tam giác ABC vuông tại A. Chứng minh rằng :
\(\dfrac{AC}{AB}=\dfrac{\sin B}{\sin C}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
Hình tự vẽ nha
Kẻ phân giác \(AD,BK\perp AD\)
\(\sin\dfrac{A}{2}=\sin BAD\)
xét \(\Delta AKB\) vuông tại K,có:
\(\sin BAD=\dfrac{BK}{AB}\left(1\right)\)
Xét \(\Delta BKD\) vuông tại K,có :
\(BK\le BD\) thay vào (1):
\(\sin BAD\le\dfrac{BD}{AB}\left(2\right)\)
lại có:\(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{BD}{BD+CD}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)
\(\Rightarrow BD=\dfrac{AB\cdot AC}{AB+AC}\) thay vào (2)
\(\sin BAD\le\dfrac{\dfrac{AB\cdot AC}{AB+AC}}{AB}=\dfrac{BC}{AB+AC}\)
\(\RightarrowĐPCM\)
Tick plz
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
Bài 1:
Áp dụng định lí pytago trong tam giác vuông ABC ta có:
BC2=AC2+AB2
BC2=42+32
BC=\(\sqrt{25}\)=5(cm)
Ta có:
Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)
Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)
Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)
Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)
Lời giải:
Kẻ \(BE\perp AC(E\in AC)\)
Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)
Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)
\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)
Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:
\(OD\perp BC\)
\(OB=R;BD=\dfrac{1}{2}a\)
\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)
Trong tam giác vuông DOB ta có:
\(sin\left(DOB\right)=\dfrac{BD}{OB}\)
\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)
Chứng minh tương tự ta có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
\(\dfrac{\sin B}{\sin C}=\dfrac{AC}{BC}:\dfrac{AB}{BC}=\dfrac{AC}{AB}\)