cho tam giác ABC có AB=AC .kẻ đường cao AD .Từ D kẻ DM vuông góc với AB ,DM vuông góc với AC
a) chứng minh rằng AD là đường trung trực MN
b) trên tia đối tia DN lấy E sao cho DỄ=DM .chứng minh CE vuông góc với DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì MD là trung trực AB trong ∆AMD
=> ∆AMD cân tại A
=> AM = AD
Vì DN là trung trực AC trong ∆ADN
=>∆ADN cân tại A
=> AD = AN
Mà AM = AD
=> AM = AN
=> ∆AMN cân tại A
a: Xét tứ giác ANDM có
\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)
=>ANDM là hình chữ nhật
b: Xét ΔABC có
D là trung điểm của CB
DN//AB
Do đó: N là trung điểm của AC
Xét tứ giác ADCEcó
N là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có AC\(\perp\)DE
nên ADCE là hình thoi
c:
Xét ΔABC có
D là trung điểm của BC
DM//AC
Do đó: M là trung điểm của AB
Để AMDN là hình vuông thì AM=AN
mà \(AM=\dfrac{AB}{2};AN=\dfrac{AC}{2}\)
nên AB=AC
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
https://h.vn/hoi-dap/question/168197.html
tham khảo nhé bạn
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
\(\widehat{MAD}=\widehat{NAD}\)
Do đó: ΔAMD=ΔAND
Suy ra: AM=AN; DM=DN
hay AD là đường trung trực của MN
b: SỬa để: Chứng minh MN vuông góc với ME
Xét ΔMNE có
MD là đường trung tuyến
MD=NE/2
DO đó:ΔMNE vuông tại M