K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

0 ai jup ak

T^T

8 tháng 9 2016

Kiến thức lớp 7 thì mình không nghĩ ra, nhưng với kiến thức lớp 10 thì sử dụng phương pháp vecto giúp giải các bài này dễ dàng 

 

27 tháng 2 2018

Chỉ cần dựa trên định lý Ta lét là được

Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H

\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)

\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)

Chứng minh theo lớp 8 rồi nhé

9 tháng 6 2016

Nói cách chứng minh thôi nhé, ko trình bày đâu.

2 góc trong cùng phía thì kề bù (bằng 180o), Lấy 180o - 90o=90o => đpcm

90o (số bị trừ) là góc vuông mà đề cho sẵn đó. 

12 tháng 5 2021

đây phải ko

12 tháng 5 2021

sao hoả

18 tháng 9 2018

- giả thiết là nếu một đường thẳng cắt 2 đường thẳng phân biệt trong số đó tạo thành 1 góc SLT( so le trong viết tắt) bằng nhau

- kết luận là thì các góc đồng vị bằng nhau 

Chứng minh định lý: {c∩a={A}c∩b={B}⇒Aˆ1=B2ˆ;A2ˆ=B3ˆ{c∩a={A}c∩b={B}⇒A^1=B2^;A2^=B3^

Kết luận: A3ˆ=B2ˆ;A2ˆ=B1ˆ;A4ˆ=B3ˆ;A1ˆ=B4ˆ

hơi khó hiểu tí nha 

18 tháng 9 2018

phần chứng minh mình thiếu {c∩a={A}c∩b={B}⇒Aˆ1=B2ˆ;A2ˆ=B3ˆ

22 tháng 7 2017

tui biết bài này, ko tin cũng dc

7 tháng 10 2017

kudo shinichi ơi,cawuj biết thì diễn giải bài này ra đi?

9 tháng 3 2017

chưa học tới 

9 tháng 3 2017

Tu kehinh nhe

Vitamgiac ABCdong đáng với tam giác A'B'C' gocB=goc B'  1

Ma gocH=gocH' 2

Tu 1va 2 suy ra

Tam giac ABHdongdang voitam giacA'B'H'

suy ra AH/A'H'=AB/A'B'=k

13 tháng 6 2017
  1. Gọi ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
14 tháng 6 2017

Cách này ko phải lớp 8