Cho hàm số \(y=f\left(x\right)=4-\dfrac{2}{5}x\) với \(x\in\mathbb{R}\)
Chứng minh rằng hàm số đã cho nghịch biến trên \(\mathbb{R}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)
Giả sử : \(x_1< x_2\)
\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)
\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)
Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)
\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vậy hàm số đồng biến trên \(R\)
a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)
Với x 1 , x 2 là hai giá trị bất kì của x thuộc R, ta có:
y 1 = f( x 1 ) = 4 - 2/5 x 1 ; y 2 = f( x 2 ) = 4 - 2/5 x 2
Nếu x 1 < x 2 thì x 1 - x 2 < 0. Khi đó ta có:
y 1 - y 2 = (4 - 2/5 x 1 ) - (4 - 2/5 x 2 )
= (-2)/5( x 1 - x 2 ) > 0. Suy ra y 1 > y 2
Vậy hàm số đã cho là hàm nghịch biến trên R.
f(x1)=3x1f(x1)=3x1
f(x2)=3x2f(x2)=3x2
Theo giả thiết, ta có:
x1<x2⇔3.x1<3.x2x1<x2⇔3.x1<3.x2 ( vì 3>03>0 nên chiều bất đẳng thức không đổi)
⇔f(x1)<f(x2)⇔f(x1)<f(x2) (vì f(x1)=3x1;f(x1)=3x1;f(x2)=3x2)f(x2)=3x2)
Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên RR.
Chú ý:
Ta cũng có thể làm như sau:
Vì x1<x2x1<x2 nên x1−x2<0x1−x2<0
Từ đó: f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0f(x1)−f(x2)=3x1−3x2=3(x1−x2)<0
Hay f(x1)<f(x2)f(x1)<f(x2)
Vậy với x1<x2x1<x2 ta được f(x1)<f(x2)f(x1)<f(x2) nên hàm số y=3xy=3x đồng biến trên R
Do \(x_1< x_2\Rightarrow3x_1< 3x_2\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Hàm số \(f\)đồng biến trên \(ℝ\)khi :
\(\forall x_1,x_2\inℝ\): \(x_1< x_2\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
=> Hàm số đã cho đồng biến trên \(ℝ\)
a) Ta có:
\(f\left( 1 \right) = 1 + 1 = 2\)
\(f\left( 2 \right) = 2 + 1 = 3\)
\( \Rightarrow f\left( 2 \right) > f\left( 1 \right)\)
b) Ta có:
\(f\left( {{x_1}} \right) = {x_1} + 1;f\left( {{x_2}} \right) = {x_2} + 1\)
\(\begin{array}{l}f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \left( {{x_1} + 1} \right) - \left( {{x_2} + 1} \right)\\ = {x_1} - {x_2} < 0\end{array}\)
Vậy \({x_1} < {x_2} \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).
Ta có: \(f\left( 5 \right) = a\)
\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\). Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).
Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).
Ta có: \(f\left( { - 2} \right) = a\)
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 2 - 2 = - 4\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = - 2\). Khi đó:
\(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = f\left( { - 2} \right) \Leftrightarrow a = - 4\).
Vậy với \(a = - 4\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = a\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\). Khi đó:
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = - 2\).
Vậy với \(a = - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).