K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

x = 0,2 bạn nhé

25 tháng 4 2017

\(\dfrac{1-X}{2-X}=\left(\dfrac{2}{3}\right)^2\)

\(\Leftrightarrow9-9X=8-4X\)

\(\Leftrightarrow-5X=-1\)

\(\Leftrightarrow X=\dfrac{1}{5}\)

30 tháng 12 2021

\(\dfrac{-3}{5}-x=\dfrac{21}{10}\)

\(x=\dfrac{-3}{5}-\dfrac{21}{10}\)

\(x=\)-\(\dfrac{27}{10}\)

 

\(x:\dfrac{2}{9}=\dfrac{9}{2}\)

\(x.\dfrac{9}{2}=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}:\dfrac{9}{2}\)

\(x=1\)

 

\(\dfrac{x}{9}=\dfrac{5}{3}\)

\(x.3=5.9\)

\(x.3=45\)

\(x=45:3=15\)

 

\(x:\left(\dfrac{2}{5}\right)^3=\left(\dfrac{5}{2}\right)^3\)

\(x:\dfrac{8}{125}=\dfrac{125}{8}\)

\(x.\dfrac{125}{8}=\dfrac{125}{8}\)

\(x=\dfrac{125}{8}:\dfrac{125}{8}=1\)

 

20 tháng 6 2021

`P=((3+x)/(3-x)-(3-x)/(3+x)+(4x^2)/(x^2-9)):((2x+1)/(x+3)-1)`

`=((4x^2-(3-x)^2-(3+x)^2)/(x^2-9)):((2x+1-x-3)/(x+3))`

`=((4x^2-x^2+6x-9-x^2-6x-9)/(x^2-9)):((x-2)/(x+3))`

`=((2x^2-18)/(x^2-9))*(x+3)/(x-2)`

`=((2(x^2-9))/(x^2-9))*(x+3)/(x-2)`

`=(2x+6)/(x-2)`

20 tháng 6 2021

ĐKXĐ: \(x\ne\pm3;x\ne-\dfrac{1}{2};x\ne2\)

\(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{\left(3-x\right)\left(3+x\right)}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{\left(3+x\right)^2-\left(3-x\right)^2-4x^2}{\left(3+x\right)\left(3-x\right)}:\dfrac{x-2}{x+3}\)

\(=\dfrac{\left(3+x-3+x\right)\left(3+x+3-x\right)-4x^2}{\left(x+3\right)\left(3-x\right)}.\dfrac{x+3}{x-2}\)

\(=\dfrac{12x-4x^2}{3-x}\cdot\dfrac{1}{x-2}\)

\(=\dfrac{4x\left(3-x\right)}{3-x}\cdot\dfrac{1}{x-2}\) \(=\dfrac{4x}{x-2}\)

 

1 tháng 3 2023

`(2/3 x +1/2) (-2x+3)=0`

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}.\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)

1 tháng 3 2023

\(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)\cdot\left(-2x+3\right)=0\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)

2 tháng 5 2022

\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)

2 tháng 5 2022

x = nhân ạ

1 tháng 3 2023

Bài mik có làm gần đây , bn tham khảo!

loading...

a: \(=\dfrac{37}{4}+\dfrac{117}{16}+\dfrac{1}{4}=\dfrac{19}{2}+\dfrac{117}{16}=\dfrac{269}{16}\)

b: \(=1+\left(\dfrac{9}{10}+\dfrac{8}{10}\right):\dfrac{19}{6}=1+\dfrac{17}{10}\cdot\dfrac{6}{19}=\dfrac{146}{95}\)

c: \(=\dfrac{1}{4}-\dfrac{6}{4}+\dfrac{6}{5}=\dfrac{-5}{4}+\dfrac{6}{5}=\dfrac{-1}{20}\)

16 tháng 7 2023

\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)

\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)

\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)

         \(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)

           \(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)

            \(x\) + 1 = 16

            \(x\)       = 16 - 1

             \(x\)     = 15 

5 tháng 6 2023

\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-2}{\sqrt{x}}\)

\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)

\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)

b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)

5 tháng 8 2021

a)\(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=\dfrac{-5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)

a) Ta có: \(\left|x+\dfrac{2}{3}\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{2}{3}=-\dfrac{5}{6}\\x+\dfrac{2}{3}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)

b) Ta có: \(\left(x-\dfrac{1}{3}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{2}{3}\\x-\dfrac{1}{3}=-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{3}\end{matrix}\right.\)