2x-2 . 3y-3 . 5z-1 = 144
giúp tui với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2x=3y = \(\dfrac{x}{3}\) = \(\dfrac{y}{2}\) = \(\dfrac{x}{15}\) = \(\dfrac{y}{10}\)
3y=5z = \(\dfrac{y}{5}\) = \(\dfrac{z}{3}\) = \(\dfrac{y}{10}\) = \(\dfrac{z}{6}\)
=> \(\dfrac{x}{15}\) = \(\dfrac{y}{10}\) = \(\dfrac{z}{6}\) = \(\dfrac{x.y.z}{15.10.6}\) = \(\dfrac{36}{900}\)= \(\dfrac{1}{25}\)
=> x= \(\dfrac{1}{25}\) . 15 =\(\dfrac{3}{5}\)
y=\(\dfrac{1}{25}\) . 10 = \(\dfrac{2}{5}\)
z=\(\dfrac{1}{25}\).6 = \(\dfrac{6}{25}\)
Vậy ...
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
Theo bài ra ta cs
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)
T lại cs
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{z}{8}\left(2\right)\)
Từ (1);(2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{2x+3y-4z}{2.15+3.10-4.8}=\frac{56}{28}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=16\end{cases}}}\)
\(2x=3y;4y=5z\) => \(8x=12y;12y=15z\)
=> \(\frac{8x}{120}=\frac{12y}{120}=\frac{15z}{120}\)=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}=\frac{2x+3y-4z}{30+30-32}=\frac{56}{28}\)
=> \(\frac{2x}{30}=2=>2x=60=>x=30\)
\(\frac{3y}{30}=2=>3y=60=>y=20\)
\(\frac{4z}{32}=2=>4z=64=>z=16\)
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}\Rightarrow\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+4}{6}=\dfrac{3y-15}{-12}=\dfrac{z+1}{5}=\dfrac{2x+4-3y+15+z+1}{6-\left(-12\right)+5}=\dfrac{\left(2x-3y+z\right)+\left(4+15+1\right)}{23}=\dfrac{72+20}{23}=\dfrac{92}{23}=4\)
\(\dfrac{x+2}{3}=4\Rightarrow x+2=12\Rightarrow x=10\\ \dfrac{y-5}{-4}=4\Rightarrow y-5=-16\Rightarrow y=-11\\ \dfrac{z+1}{5}=4\Rightarrow z+1=20\Rightarrow z=19\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+2}{3}=\dfrac{y-5}{-4}=\dfrac{z+1}{5}=\dfrac{2x-3y+z+4+15+1}{2\cdot3-3\cdot\left(-4\right)+5}=\dfrac{92}{23}=4\)
Do đó: x=10; y=-11; z=4
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{2x+3y-5z}{10+12-15}=\dfrac{2x-3y+5z}{10-12+15}\\ \Rightarrow A=\dfrac{10+12-15}{10-12+15}=\dfrac{7}{13}\)
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
a, \(A+B=x^2-2x-y^2+3y-1+\left(-2x^2+3y^2-5z+3\right)\)
\(=x^2-2x-y^2+3y-1-2x^2+3y^2-5z+3\)
\(=-x^2-2x+2y^2+3y-5z+2\)
b, \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5z+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5z-3\)
\(=3x^2-2x-4y^2+3y+5z-4\)
c, Thay x=-2,y=1 vào biểu thức A-B ta được:
\(A-B=3.\left(-2\right)^2-2.\left(-2\right)-4.1^2+3.1+5z-4=12+4-4+3+5z-4=11+5z\)
\(A=x^2-2x-y^2+3y-1\)
\(B=-2x^2+3y^2-5z+3\)
a) A+B =
\(\left(x^2-2x-y^2+3y-1\right)+\left(-2x^2+3y^2-5z+3\right)\)
\(=\left(x^2-2x^2\right)-\left(y^2+3y^2\right)-2x+3y-5z-1+3\)
\(=-x^2-4y^2-2x+3y-5z-1+3\)
\(=\left(-1-4-2+3-5-1+3\right).\left(x^2-x\right).y^2.z\)
\(=-7xy^2z\)
b ) Tính A-B ( tương tự A+B )
C) Thay x=-2 và y=1 vào biểu thức ta có :
\(-7xy^2z\)
\(=-7.-2.1.z\)
\(=14z\)