Với x,y thỏa mãn \(3x^2+y^2+2x-2y=0\), hãy tìm các giá trị nguyên dương của biểu thức A
\(A=\dfrac{4xy}{y^2-x^2}:\left(\dfrac{1}{y^2-x^2}+\dfrac{1}{y^2+2xy+x^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)
Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)
\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)
\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
rút gọn A
\(A=\dfrac{4xy}{y^2-y^2}:\left(\dfrac{x+y+\left(y-x\right)}{\left(y-x\right)\left(x+y\right)^2}\right)=\dfrac{4xy\left[\left(y-x\right)\left(x+y\right)^2\right]}{2y\left(y-x\right)\left(x+y\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne\left|y\right|\\A=2x\left(x+y\right)=2x^2+2xy\end{matrix}\right.\)
\(B=3x^2+y^2+2x-2y\)
\(B-A+1=x^2+y^2+2x-2y-2xy+1=\left(x+1-y\right)^2\)
\(\Rightarrow A\le1\Rightarrow A=1\)\(\Rightarrow x+1-y=0\) thay lại ra được x,y