a,\(\dfrac{3x+7}{x-1}\) giup mik voi !!!!
b,\(\dfrac{4x-1}{3-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai câu là hoàn toàn giống nhau, mình làm câu a, câu b bạn tự làm tương tự:
ĐKXĐ: ...
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{4}{4x+\frac{7}{x}-8}+\frac{3}{4x+\frac{7}{x}-10}=1\)
Đặt \(4x+\frac{7}{x}-10=t\)
\(\Leftrightarrow\frac{4}{t+2}+\frac{3}{t}=1\Leftrightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)
\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x+\frac{7}{x}-10=-1\\4x+\frac{7}{x}-10=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-9x+7=0\\4x^2-16x+7=0\end{matrix}\right.\) (bấm casio)
a, (3x-1)(x2+2)=(3x-1)(7x-10)
<=>(3x-1)(x2+2)-(3x-1)(7x-10)=0
<=>(3x-1)(x2+2-7x+10)=0
<=>(3x-1)(x2-7x+12)=0
<=>(3x-1)(x2-3x-4x+12)=0
<=>(3x-1)(x-3)(x-4)=0
<=>\(\left[{}\begin{matrix}3x-1=0\\x-3=0\\x-4=0\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\\x=4\end{matrix}\right.\)
Vậy ft có tập nghiệm S=\(\left\{\dfrac{1}{3},3,4\right\}\)
b,\(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (ĐKXĐ:t\(\ne2;t\ne-3\))
<=>\(\dfrac{\left(t+3\right)^2+\left(t-2\right)^2}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{t^2-2t+3t-6}\)
<=>\(\dfrac{t^2+6t+9+t^2-4t+4}{\left(t-2\right)\left(t+3\right)}\)=\(\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
=>2t2+2t+13=5t+15
<=>2t2+2t-5t+13-15=0
<=>2t2-3t-2=0
<=>2t2-4t+t-2=0
<=>(t-2)(2t+1)=0
<=>\(\left[{}\begin{matrix}t-2=0\\2t+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}t=2\left(loại\right)\\t=\dfrac{-1}{2}\left(tmđkxđ\right)\end{matrix}\right.\)
Vậy ft có nghiệm duy nhất x=\(\dfrac{-1}{2}\)
Giải:
a) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
Chia cả hai vế cho 3x-1, ta được:
\(x^2+2=7x-10\)
\(\Leftrightarrow x^2-7x+10+2=0\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow x^2-4x-3x+12=0\)
\(\Leftrightarrow x\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\dfrac{t+3}{t-2}+\dfrac{t-2}{t+3}=\dfrac{5t+15}{t^2+t-6}\) (1)
ĐKXĐ: \(t\ne2;t\ne-3\)
\(\left(1\right)\Leftrightarrow\dfrac{\left(t+3\right)\left(t+3\right)}{\left(t-2\right)\left(t+3\right)}+\dfrac{\left(t-2\right)\left(t-2\right)}{\left(t-2\right)\left(t+3\right)}=\dfrac{5t+15}{\left(t-2\right)\left(t+3\right)}\)
\(\Rightarrow\left(t+3\right)^2+\left(t-2\right)^2=5t+15\)
\(\Leftrightarrow t^2+6t+9+t^2-4t+4=5t+15\)
\(\Leftrightarrow2t^2+2t+13=5t+15\)
\(\Leftrightarrow2t^2+2t+13-5t-15=0\)
\(\Leftrightarrow2t^2-3t-2=0\)
\(\Leftrightarrow2t^2-4t+t-2=0\)
\(\Leftrightarrow2t\left(t-2\right)+\left(t-2\right)=0\)
\(\Leftrightarrow\left(2t+1\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2t+1=0\\t-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{2}\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)
Vậy ...
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
\(\dfrac{x+3}{15}=\dfrac{1}{3}\left(1\right)\\ \Leftrightarrow x+3=\dfrac{1}{3}\cdot15\\ \Leftrightarrow x+3=5\\ \Rightarrow x=5-3\\ \Rightarrow x=2\)
Vậy tập nghiệm phương trình (1) là \(\left\{2\right\}\)
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)
b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)
\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
đề bai la tim x nguyen se phan so la so nguyen
Để a nguyên \(\Leftrightarrow\) 3x + 7 \(⋮\) x - 1
\(\Rightarrow\) 3x + 7 \(⋮\) x - 1
\(\Rightarrow\) 3x - 3 + 10 \(⋮\) x - 1
\(\Rightarrow\) 3(x-1)+10\(⋮\) x-1
\(\Rightarrow\) 10 \(⋮\) x-1
Vậy x \(\in\){-9 ; 11 ; 0 ; 2 }