Cho góc xOy = 50o ,điểm A nằm trong góc đó.Vẽ điểm B đối xứng với A qua Ox;điểm C đối xứng với A qua Oy.
a) So sánh OB và OC
b) Tính số đo góc BOC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B đối xứng với A qua tia 0X. Chọn H làm giao điểm của AB với 0X. Theo tính chất đường tròn.
Ta có: AB vông góc với tia 0X. H là trung điểm của AB.
Suy ra:
AH=HB
0A=0B (1)
C đối xứng với A qua tia 0Y. Chọn K làm giao điểm của AC với 0Y. Theo tính chất đường tròn.
Ta có: AC vông góc với tia 0Y. K là trung điểm của AC.
Suy ra:
AK=KC
0A=0C (2)
Từ (1) và (2), ta có:
0A=0B=0C.
Vậy kết luận 0B=0C.
Vì A đối xứng qua OX nên góc X0A= góc X0B.(3)
Vì A đối xứng qua OY nên góc Y0A= góc Y0C.(4)
Mà góc X0A+A0Y=X0Y.
Theo (3) và (4), ta có:
B0C=2X0A+2A0Y. Hoặc B0C=2XOY.
ta có tam giác AOC và AOB là các tam giác cân, do đó các đường Õ và Oy vừa là đường cao vừa là đường phân giác của 2 tam giác.
⇒[COyˆ=yOAˆAOxˆ= xOBˆ⇒[COy^=yOA^AOx^= xOB^ (1)
để B đối xứng với C qua O thì COAˆ+AOBˆ=180oCOA^+AOB^=180o
đồng thời : COyˆ+yOAˆ=COAˆAOxˆ+ xOBˆ=AOBˆCOy^+yOA^=COA^AOx^+ xOB^=AOB^
⇒COyˆ+yOAˆ+xOAˆ+xOBˆ=COAˆ+AOBˆ=1800⇒COy^+yOA^+xOA^+xOB^=COA^+AOB^=1800 (2)
từ (1) và (2) ⇒2yOAˆ+2 xOAˆ=1800⇔yOAˆ+xOAˆ=900⇒2yOA^+2 xOA^=1800⇔yOA^+xOA^=900
hay xOyˆ=90oxOy^=90o
vậy khi xOyˆ=90oxOy^=90o thì B đối xứng với C qua O
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠ (AOB) ⇒ ∠ O 1 = ∠ O 4 (3)
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠ (AOC) ⇒ ∠ O 2 = ∠ O 3 (4)
Vì B, O, C thẳng hàng nên:
∠ O 1 + ∠ O 2 + ∠ O 3 + ∠ O 4 = 180 0 (5)
Từ (3),(4) ; (5) ⇒ 2 ∠ O 1 + 2 ∠ O 2 = 180 0
⇒ ∠ O 1 + ∠ O 2 = 90 0 ⇒ ∠ (xOy) = 90 0
Vậy ∠ (xOy) = 90 0 thì B đối xứng với C qua O
a; Vì C đối xứng với A qua Oy => CA vuông góc với Oy và Oy đi qua trung điểm Ca
=> O thuộc dường trung trục CA => oC = OA ( tính chất đường trung trực ) (1)
Tương tự OB = OA (2)
Từ (1) và (2) => OB = OC
b; Gọi AC giao OY tại M ; AB giao Õx tại N
OA= OB => tam giác ABO cân tại O => OM vừa là đg cao vừa là p/g => COM = AOM (1)
CMTT AON = BON
BOC = COM + AOM + AON + BON = AOM + AOM + AON + AON = 2 ( AOM + AON ) = 2. xOy = 2.50 = 100 độ