Tìm nghiệm của đa thức sau: f(x) = x\(^2\)+x+1
Giúp mk vs nha nha nha !!!! AHUHU MK CẦN GẤP LẮM!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét f(x)=0=>=x^2+x-6=0
=>x^2-2x+3x-6=0
=> x(x-2)+3(x-2)=0
=>(x-3)(x-2)=0
=> __x=3
|___x=2
vậy nghiệm của f(x) là 3 và 2
Cho \(2x^2+3x+1=0\)
\(\Rightarrow2x.\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(2x+1\right).\left(x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}2x=-1\\x=-1\end{cases}}}\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\x=-1\end{cases}}\)là nghiệm của đa thức
=2x^2+2x+x+1
=2x(x+1)+(x+1)
=(2x+1)(x+1)
dùng máy tính cx tìm đc nghiệm nha bạn
coi như giải hệ pt
\(\hept{\begin{cases}y=x+1\left(1\right)\\y^2-3y\sqrt{x}+2x=0\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\left(y^2-3\sqrt{x}.y+\frac{9x}{4}\right)=\frac{9x}{4}-2x=\frac{x}{2}\\ \)
\(\left(y-\frac{3\sqrt{x}}{2}\right)^2=\left(\frac{\sqrt{x}}{2}\right)^2\Rightarrow\orbr{\begin{cases}y=\frac{3\sqrt{x}}{2}-\frac{\sqrt{x}}{2}=\sqrt{x}\\y=\frac{3\sqrt{x}}{2}+\frac{\sqrt{x}}{2}=2\sqrt{x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=x+1\left(3\right)\\2\sqrt{x}=x+1\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow\orbr{\begin{cases}\left(\sqrt{x}-\frac{1}{2}\right)^2=\frac{1}{4}-1\left(vonghiem\right)\\\left(\sqrt{x}-1\right)^2=0\Rightarrow\sqrt{x}=1\Rightarrow x=1\end{cases}}\)
Vậy chỉ có điểm x=1; y=2 thỏa mãn
b) Để g(x) có nghiệm
\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)
c) Để k(x) có nghiệm
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2+x-4x-4=0\)
\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)
Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức
Ta có công thức tổng quát : \(f\left(x\right)=1.2+2.3+3.4+...+x\left(x+1\right)=\frac{x\left(x+1\right)\left(x+2\right)}{3}\)
Do vậy f(x) = 0 \(\Leftrightarrow\frac{x\left(x+1\right)\left(x+2\right)}{3}=0\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
Tới đây bạn tự làm! (chú ý rằng bạn chưa cho điều kiện của x)
7x2 - 15x + 8 = 0
\(\Leftrightarrow\)7x2 - 7x - 8x +8 = 0
\(\Leftrightarrow\)7x.(x - 1) - 8.(x - 1) = 0
\(\Leftrightarrow\)(7x - 8)(x - 1) = 0
\(\Leftrightarrow\)7x - 8 = 0 và x - 1 = 0
\(\Leftrightarrow\) x = 8/7 và x= 1
x2 - 5x - 6 = 0
<=>x2 - x + 6x - 6 = 0
<=>x(x-1) + 6(x-1) = 0
<=> (x+6)(x-1) = 0
<=> x+6 = 0 và x-1 = 0
<=> x = -6, x= 1
f(x) = x\(^2\)+ x +1 = x\(^2\)+ \(\dfrac{1}{2}\)x + \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)+\(\dfrac{3}{4}\)
= x (x+\(\dfrac{1}{2}\)) + \(\dfrac{1}{2}\)(x+\(\dfrac{1}{2}\)) +\(\dfrac{3}{4}\)
= (x+\(\dfrac{1}{2}\)) + (x+\(\dfrac{1}{2}\))+\(\dfrac{3}{4}\)
= (x+\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)
Vì (x+\(\dfrac{1}{2}\))\(^2\)\(\ge\)0
=> (x+\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\) > 0
=> f(x) ko có nghiệm.
Thấy đúng thì tick cho mk nha, thanks trc
Chúc bn hk tốt!!!
bạn viêt rõ đa thức được ko , mình ko hiểu