Chứng minh rằng không có 3 số dương a,b,c nào thỏa mãn cả 3 bất đẳng thức : \(a+\dfrac{1}{b}< 2\) ; \(b+\dfrac{1}{c}< 2\) ; \(c+\dfrac{1}{a}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng
Sửa đề: Chứng minh rằng không có các số a, b, c nào thỏa mãn cả 3 bất đẳng thức
|b - c| > |a|(*); |c - a| > |b|(**); |a - b| > |c|(***)
Ta dễ thấy a, b, c phải khác nhau từng đôi 1
Ta thấy rằng vai trò của a, b, c trong bài này là như nhau nên ta chỉ cần giải 4 trường hợp là
\(\left(a>0,b>0,c>0\right);\left(a< 0,b< 0,c< 0\right);\left(a>0,b>0,c< 0\right);\left(a< 0,b< 0,c>0\right)\)
Không mất tính tổng quát ta giả sử: |a| > |b| > |c|
Với \(a>0,b>0,c>0\)thì |b - c| > |a| là sai (1)
Với \(a< 0,b< 0,c< 0\) thì |b - c| > |a| là sai (2)
Với \(a>0,b>0,c< 0\)thì ta đặt \(c=-z\left(z>0\right)\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}b+z>a\\a-b>z\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}z>a-b\\z< a-b\end{cases}}\)(sai) (3)
Với \(a< 0;b< 0;c>0\)thì ta đặt \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}y+c>x\\x-y>c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x-y\\c< x-y\end{cases}}\)(sai) (4)
Từ (1), (2), (3), (4) ta suy ra điều phải chứng minh
mk góp thêm 1 cách nữa
Giả sử tồn tại 3 số a, b, c thỏa mãn cả 3 BĐT trên. Ta có:
\(\left|b-c\right|>\left|a\right|\)\(\Rightarrow\)\(\left(b-c\right)^2>a^2\)\(\Leftrightarrow\)\(b^2-2bc+c^2-a^2>0\)
\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(a-b+c\right)>0\)(1)
Tương tự \(\left|c-a\right|>\left|b\right|\)\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(-a+b+c\right)>0\) (2)
và \(\left|a-b\right|>\left|c\right|\)\(\Leftrightarrow\)\(-\left(a-b+c\right)\left(-a+b+c\right)>0\) (3)
Nhân (1), (2) và (3) theo vế ta được \(-\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2>0\) (vô lý)
Vậy ko tồn tại 3 số a, b, c thỏa mãn 3 BĐT đã cho.
Ta có: \(\frac{a^3}{a^2+b^2}=\frac{\left(a^3+ab^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)
Tương tự CM được:
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\) và \(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng vế 3 BĐT trên lại ta được:
\(\frac{a^3}{b^2+c^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a+b+c}{2}=3\)
Dấu "=" xảy ra khi: a = b = c = 2
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-ab+b^2\ge ab\)
Nhân hai vế của phương trình với \(a+b>0\) ta có:
\(\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)Áp dụng kết quả trên ta có:
\(A=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le\)
\(\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}=\)(vì abc=1)
\(=\dfrac{1}{ab\left(a+b+c\right)}+\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=1\)
Lời giải:
Phản chứng. Giả sử tồn tại 3 số dương $a,b,c$ thỏa mãn điều trên
$\Rightarrow a+\frac{1}{b}+b+\frac{1}{c}+c+\frac{1}{a}< 6$
$\Leftrightarrow (a+\frac{1}{a}-2)+(b+\frac{1}{b}-2)+(c+\frac{1}{c}-2)< 0$
$\Leftrightarrow \frac{(a-1)^2}{a}+\frac{(b-1)^2}{b}+\frac{(c-1)^2}{c}< 0$ (vô lý với mọi $a,b,c>0$)
Do đó điều giả sử là sai.
Tức là không có 3 số dương $a,b,c$ nào thỏa mãn BĐT đã cho.