K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Để x là nghiệm của đa thức P(x)

\(\Leftrightarrow P\left(x\right)=0\)

\(\Rightarrow x^2+4x+3=0\)

\(\Rightarrow x^2+2x+2x+3=0\)

\(\Rightarrow x\times\left(x+2\right)\times2x+4-1=0\)

\(\Rightarrow x\times\left(x+2\right)\times2\times\left(x+2\right)-1=0\)

\(\Rightarrow\left(x+2\right)^2=1\)

\(\Rightarrow x=-1hayx=-3\)

18 tháng 5 2017

\(P\left(x\right)=x^2+4x+3\)

Ta có: \(P\left(x\right)=x^2+4x+3\)

\(P\left(x\right)=x^2+x+3x+3\)

\(P\left(x\right)=x.\left(x+1\right)+3.\left(x+1\right)\)

\(P\left(x\right)=\left(x+1\right).\left(x+3\right)\)

Ta có: P(x)=0 thì \(\left(x+1\right).\left(x+3\right)=0\)

\(\Leftrightarrow x+1=0\) hoặc \(x+3=0\)

\(\Leftrightarrow x=-1\) hoặc \(x=-3\)

Vậy \(x\in\left\{-1;-3\right\}\) là nghiệm của đa thức P(x)

Chúc bạn học tốt!!!

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:

$x^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow Q(x)=x^2+\sqrt{3}\geq \sqrt{3}>0$ với mọi $x\in\mathbb{R}$

Do đó đa thức $Q(x)$ vô nghiệm.

7 tháng 8 2019

5x4 - x6 = 0

=> x4(5-x2) = 0

<=> x = 0 hoặc 5 = x2

<=> x = 0 hoặc x = \(\pm\sqrt{5}\)

7 tháng 8 2019

\(5x^4-x^6=0\)

\(\Leftrightarrow x^4\left(5-x^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^4=0\\5-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

1 tháng 5 2019

CM đa thức k có nghiệm:

a) x^2 + +5x + 8

        Vì x^2 + +5x >hc = 0 với mọi x

     => x^2 + +5x + 8 > 0 với mọi x

      Vậy đa thức x^2 + +5x + 8 k có nghiệm

các câu sau bn lm tương tự vậy nha

1 tháng 5 2019

Tìm nghiệm đa thức:

2x^2 + 5x + 1

   Giả sử 2x^2 + 5x + 1= 0

        => 2x^2 + 2x + 3x + 1 = 0

             2x(x+ 1) + 3(x + 1) = 0

             (2x + 3)(x + 1) = 0

=> 2x + 3 = 0                  hoặc                      =>  x + 1 = 0

     2x = -3                                                           x = -1

       x = -3/2= -1,5

7 tháng 5 2018

Cho f(x) = 0

=> ( x -2 ).( x+3) = 0

=> x -2 = 0 => x= 2

x + 3 = 0 => x = - 3

=> x =2 , x = -3 là nghiệm của f(x)

mà nghiệm của f(x) cũng là nghiệm của g(x)

=> x = 2; x = -3 là nghiệm của g(x)

ta có: x = 2 là nghiệm của g(x)

=> 2^3 + a. 2^2 + b. 2 + 2 = 0

8 + 4a + 2b + 2 = 0

2.( 4 + 2a + b + 1) =0

=> 4 + 2a + b + 1 = 0

2a + b + 5 = 0

b               = -5 - 2a

ta có: x = -3 là nghiệm của g(x)

=> (-3)^3 + a . ( -3)^2 + b.(-3) + 2 = 0

- 27 + 9a - 3b + 2 = 0

- 25 + 9a - 3.( -5 - 2a) = 0

- 25 + 9a + 15 + 6a = 0

-10 + 15 a             = 0

15a                      = 10

a                         = 10 / 15 

a                            = 2/3

mà b = -5 - 2a

b      = -5 - 2. 2/3

b           = - 5 - 4/ 3

b            = -19/3

KL: a = 2/3, b = -19/3

Bài 2: 

a: Sửa đề: \(x^2+2x+3\)

Đặt \(x^2+2x+3=0\)

\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)

Do đó: Phương trình vô nghiệm

b: Đặt \(x^2+4x+6=0\)

\(\Leftrightarrow x^2+4x+4+2=0\)

\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)

giúp em bài 1 với 3 nữa đc không ạaaa?

8 tháng 10 2021

\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)