K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ta có:f(1)=a+b+c

và f(-1)=a-b+c

Theo đề: f(1)+f(-1) \(⋮\)3

hay (a+b+c)+(a-b+c) \(⋮\)3

=> 2a +2c \(⋮\)3

=> 2(a+c) \(⋮\)3

mà (2,3)=1

nên a+c \(⋮\) 3

12 tháng 4 2015

bài này thay f(x) bằng f(0), f(1), f(-1) là dk

 

2 tháng 4 2016

xét x=o nên f(x) = c nên c chia hết cho 3

xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)

xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)

từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Lời giải:

Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:

\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)

Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$

Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$

Do đó ta có đpcm

19 tháng 3 2016

khó quá chịu thôi

16 tháng 4 2017

Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)

\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)

\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)

Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)

Ta lại có : \(a+b+c⋮3\)

\(b⋮3\) ; \(c⋮3\)

\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)

Vậy a,b,c \(⋮3\)

4 tháng 5 2017

đây là toán lớp mấy vậy

5 tháng 8 2015

Ta có f(0)=c chia hết cho 3.

f(1)=a+b+c chia hết cho 3 mà c chia hết cho 3 nên a+b chia hết cho 3.

f(-1)=a-b+c chia hết cho 3=> a-b chia hết cho 3.

Ta có (a+b)+(a-b)=2a chia hết cho 3. Mà 2,3 nguyên tố cùng nhau nên a chia hết cho 3.

a+b+c chia hết cho 3, a,c chia hết cho 3=> b chia hết cho 3

7 tháng 8 2016

+ x=0  => c chia hết cho 3

=> ax2 + bx chia hết cho 3  => x(ax +b) chia hết cho 3 lấy x không chia hết cho 3 => ax +b chia hết cho 3  lấy x chia hết cho 3 => b chia hết cho 3

Vậy b ; c chia hết cho 3 =>  ax2 chia hết cho 3   lấy x không chia hết cho 3 => a chia hết cho 3

=> dpcm

18 tháng 1 2018

vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:

- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3

- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3

lại có c chia hết cho 3 (đã chứng minh)

nên suy ra a+b chia hết cho 3

- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c

mà  c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)

nên suy ra 2a chia hết cho 3

mà (2,3)=1    (2 số nguyên tố cùng nhau)

suy ra a chia hết cho 3

mà a+b chia hết cho 3

nên suy ra b chia hết cho 3

vậy a,b,c chia hết cho 3

27 tháng 4 2018

ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5

=> 0+0+0+d chia hết cho 5 => d chia hết 5

ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5

=> a+b+c+d chia hết 5

Mà d chia hết 5 => a+b+c chia hết 5               (1)

ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5

=> -a+b-c+d chia hết 5

Mà d chia hết 5 => -a+b-c chia hết 5              (2)

Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5

=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5

Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5

=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5              (3)

ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5

=> 8a+4b+2c+d chia hết 5

Mà b,d chia hết 5 => 8a+2c chia hết 5                             (4)

Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5

=> c chia hết 5

Vậy...

Đúng thì k nha mina !!

17 tháng 2 2020

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\implies\) \(f\left(-x\right)=a.\left(-x\right)^2-bx+c\)

\(\implies\) \(f\left(-x\right)=a.x^2-bx+c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=ax^2+bx+c+ax^2-bx+c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.ax^2+2c\)

\(\implies\)\(f\left(x\right)+f\left(-x\right)=2.\left(ax^2+c\right)\) chia hết cho 2

\(\implies\)\(f\left(x\right)+f\left(-x\right)\) chia hết cho 2 với mọi số nguyên x