K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Ta có :

\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+..............+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)

\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.............+\dfrac{100}{3^{99}}\)

\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^3}+.....+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+.......+\dfrac{101}{3^{101}}\right)\)

\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(6D=3+1+\dfrac{1}{3}+............+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(6D-2D=\left(3+1+\dfrac{1}{3}+..........+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{203}{3^{100}}< 3\)

\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)

~ Học tốt ~

28 tháng 3 2019

6D ở đâu ra hả bn Nguyễn Thanh Hằng

21 tháng 5 2016

D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}\)

\(\frac{1}{3}và\frac{3}{4}\)

\(\frac{1}{3}=\frac{4}{12}\)

\(\frac{3}{4}=\frac{9}{12}\)

\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)

25 tháng 4 2019

Ta có: \(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(\Rightarrow4D=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D< 3-\frac{203}{3^{100}}< 3\Rightarrow D< \frac{3}{4}\left(ĐPCM\right)\)

NV
3 tháng 5 2019

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}=A-\frac{101}{3^{101}}\)

\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow2A=3-\frac{1}{3^{100}}\Rightarrow A=\frac{3}{2}-\frac{1}{2.3^{100}}< \frac{3}{2}\)

\(\Rightarrow2D=A-\frac{101}{3^{101}}< A< \frac{3}{2}\Rightarrow D< \frac{3}{4}\)

20 tháng 6 2016

Tính 3D, lấy 3D -D là đc 

NV
26 tháng 3 2019

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{101}{3^{101}}\) (1)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{100}{3^{101}}+\frac{101}{3^{102}}\) (2)

Trừ (1) cho (2):

\(\frac{2}{3}A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}-\frac{101}{3^{102}}=B-\frac{101}{3^{102}}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{101}}\)

\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{101}}+\frac{1}{3^{102}}\)

\(\Rightarrow\frac{1}{3}B+\frac{1}{3}-\frac{1}{3^{102}}=\frac{1}{3}+\frac{1}{3^2}+..+\frac{1}{3^{101}}=B\)

\(\Rightarrow\frac{2}{3}B=\frac{1}{3}-\frac{1}{3^{102}}\Rightarrow B=\frac{1}{2}\left(1-\frac{1}{3^{101}}\right)=\frac{1}{2}-\frac{1}{2.3^{101}}\Rightarrow B< \frac{1}{2}\)

\(\Rightarrow A=\frac{3}{2}\left(B-\frac{101}{3^{102}}\right)< \frac{3}{2}B< \frac{3}{2}.\frac{1}{2}=\frac{3}{4}\)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

28 tháng 1 2016

ghi ra rồi tui bấm

khôn vừa vừa thôi chớ