K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Bài 1: Ta có:

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)

\(=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\)

\(=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\)

\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+...+\dfrac{1}{26}-\dfrac{1}{32}\right)\)

\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)

Vậy \(M=\dfrac{5}{16}\)

Bài 2: Ta có:

\(A=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{210}\)

\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\)

\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}\)

\(=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{1}{10}\)

Vậy \(A=\dfrac{1}{10}\)

22 tháng 4 2017

Giải:

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}.\)

\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+\dfrac{5}{208}.\)

\(M=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+\dfrac{5}{13.16}.\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}\left[\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+\left(\dfrac{1}{13}-\dfrac{1}{13}\right)+\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\right].\)

\(M=\dfrac{5}{3}\left[0+0+0+\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\right]\)

\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}\left(\dfrac{4}{16}-\dfrac{1}{16}\right).\)

\(M=\dfrac{5}{3}.\dfrac{3}{16}.\)

\(M=\dfrac{15}{48}=\dfrac{5}{16}.\)

14 tháng 4 2023

A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)

A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)\(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)

A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)

A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)

A = \(\dfrac{1}{6}\)

 

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\\ =\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\\ =\dfrac{20}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\\ =\dfrac{20}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\right)\\ =\dfrac{20}{6}.\left(\dfrac{1}{8}-\dfrac{1}{32}\right)\\ =\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)

Anh giải cách đây 3 ngày rồi!

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\\ M=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\\ M=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\\M=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\right)\\ M=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)

27 tháng 5 2017

\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)

\(\Rightarrow M=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\)

\(\Rightarrow M=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{8}{14.20}+\dfrac{8}{20.26}+\dfrac{8}{26.32}\right)\)

\(\Rightarrow M=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\right)\)

\(\Rightarrow M=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)\)

\(\Rightarrow M=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)

15 tháng 3 2023

A=(-1/4.5)+(-1/5.6)+(-1/6.7)+(-1/7.8)+(-1/8x9)+(-1/9.10)

A=(-1/4)-(-1/5)+(-1/5)-(-1/6)+(-1/6)-(-1/7)+(-1/7)-(-1/8)+(-1/8)-(-1/9)-(-1/9)+(-1/10)

A=(-1/4)-(-1/10)

A=-1/4+1/10

A=-3/20

a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)

\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)

\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)

\(=\dfrac{3}{5}+\dfrac{41}{25}\)

\(=\dfrac{15}{25}+\dfrac{41}{25}\)

\(=\dfrac{56}{25}\)

16 tháng 4 2021

a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\) 

A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\) 

A = \(\dfrac{3}{5}+\dfrac{41}{6}\)  . 2 : \(\dfrac{25}{3}\) 

A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\) 

A = \(\dfrac{3}{5}\)  + \(\dfrac{41}{25}\) 

A = \(\dfrac{56}{25}\)

10 tháng 7 2023

\(\dfrac{1}{3}-\dfrac{1}{12}-\dfrac{1}{20}-\dfrac{1}{30}-\dfrac{1}{42}-\dfrac{1}{56}-\dfrac{1}{72}-\dfrac{1}{90}-\dfrac{1}{110}=x-\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{3.4}\) - \(\dfrac{1}{4.5}\) - \(\dfrac{1}{5.6}\) - \(\dfrac{1}{6.7}\) - \(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\) - \(\dfrac{1}{9.10}\) - \(\dfrac{1}{10.11}\) = \(x\) - \(\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - (\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)\(\dfrac{1}{7.8}\) + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\) + \(\dfrac{1}{10.11}\) =\(x\)-\(\dfrac{5}{13}\)

\(\dfrac{1}{3}\)  - (\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+ \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)) = \(x\) - \(\dfrac{5}{13}\)

 \(\dfrac{1}{3}\) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{11}\)) =  \(x\) - \(\dfrac{5}{13}\)

\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) +  \(\dfrac{1}{11}\) =  \(x\) - \(\dfrac{5}{13}\)

         \(x-\dfrac{5}{13}=\dfrac{1}{11}\)

        \(x\)           = \(\dfrac{1}{11}\) + \(\dfrac{5}{13}\)

      \(x\)           = \(\dfrac{68}{143}\)

10 tháng 7 2023

Em cảm ơn ạ.

2 tháng 5 2017

\(\dfrac{1}{2}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)

=\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\)+\(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)+\(\dfrac{1}{8.9}\)+\(\dfrac{1}{9.10}\)

=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)

=\(\dfrac{1}{1}\)-\(\dfrac{1}{10}\)=\(\dfrac{10}{10}\)-\(\dfrac{1}{10}\)=\(\dfrac{9}{10}\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}=\dfrac{9}{10}\)

2 tháng 5 2017

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(1-\dfrac{1}{10}\) = \(\dfrac{9}{10}\)

12 tháng 9 2021

\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\\ =\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{3}-\dfrac{1}{9}\\ =\dfrac{2}{9}\)

12 tháng 9 2021

\(a,\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)

\(=\dfrac{1}{212}\)

31 tháng 12 2017

\(-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)

\(=-\dfrac{1}{90}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)

\(=-\dfrac{1}{90}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right)\)

\(=-\dfrac{1}{90}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\)

\(=-\dfrac{1}{90}-\left(1-\dfrac{1}{9}\right)\)

\(=-\dfrac{1}{90}-\dfrac{8}{9}\)

\(=-\dfrac{9}{10}\)