Cho tam giác ABC, vẽ tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ lệ đồng dạng \(k=\dfrac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Dựng ΔADE ΔABC theo tỉ số 2/3
Trên AB lấy D, trên AC lấy E sao cho
Khi đó theo định lý Ta-let đảo ta suy ra DE // BC
⇒ ΔADE ΔABC theo tỉ số 2/3.
+ Dựng ΔA’B’C’ = ΔADE
Vẽ đoạn A’B’ = AD.
Dựng góc
Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.
Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)
Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:
Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)
nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.
b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).
Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).
Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).
b: Xét ΔAMN và ΔABC có
\(\widehat{AMN}=\widehat{ABC}\)(đồng vị, MN//BC)
góc A chung
Do đó: ΔAMN\(\sim\)ΔABC
Bài 1 a) có vì hai tam giác bằng nhau thì đồng dạng với nhau bởi các cặp cạnh bằng nhau nên tương ứng tỉ lệ với nhau và bằng 1
nên tỉ số đồng dạng cũng =1
b)do tam giác A'B'C'~tam giác ABC theo tỉ số k nên A'B'/AB=k
suy ra AB/A'B'=1/k nên tam giác ABC~tam giác A'B'C' theo tỉ số 1/k
Bài 2 b) do tam giác def đồng dạng với tam giác mnp nên
de/mn=df/mp=ef/np=4/6=2/3
do df=5cm nên mp=7,5cm
do np=9cm nên ef=6cm
Lời giải:
a. $\triangle A'B'C'\sim \triangle ABC$ theo tỉ số $k$
$\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{A'C'}{AC}=k$
$\Rightarrow A'B'=kAB; B'C'=kBC; C'A'=kCA$
$\Rightarrow A'B'+B'C'+C'A'=k(AB+BC+AC)$
$\Rightarrow P_{A'B'C'}=kP_{ABC}$
$\Rightarrow \frac{P_{A'B'C'}}{P_{ABC}}=k$
b.
Chu vi tam giác ABC:
$40:(5-3).3=60$ (dm)
Chu vi tam giác A'B'C':
$40:(5-3).5=100$ (dm)
Giải:
Trên cạnh AB lấy điểm M sao cho AM= 2323AB.
Từ m kẻ đường song song với AB cắt AC tại N.
Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=2323
Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)
Trên cạnh AB lấy điểm M sao cho AM= 232323AB.
Từ m kẻ đường song song với AB cắt AC tại N.
Ta có ∆AMN ∽ ∆ABC theo tỉ số đồng dạng K=232323
Dựng ∆A'B'C' = ∆AMN(theo trường hợp cạnh cạnh cạnh)