K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

\(x^2-2x+m-5=0\)

\(\Delta'=\left(-1\right)^2-1\cdot\left(m-5\right)\)

\(=1-m+5\\ =6-m\)

Để pt có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow6-m\ge0\Leftrightarrow m\le6\)

Với \(m\le6\) theo vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-5\end{matrix}\right.\dfrac{\left(1\right)}{\left(2\right)}\)

Ta có : \(2x_1+3x_2=7\) \(\left(3\right)\)

Từ (1) và (3) ta có hpt

\(\left\{{}\begin{matrix}x_1+x_2=2\\2x_1+3x_2=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=4\\2x_1+3x_2=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x_2=-3\\x_1+x_2=2\end{matrix}\right.\\\Leftrightarrow \left\{{}\begin{matrix}x_2=3\\x_1=-1\end{matrix}\right.\)

Thay \(x_1=-1;x_2=3\) vào (3) ta có

\(-1\cdot3=m^2-5\)

\(\Leftrightarrow-3=m^2-5\\ \Leftrightarrow m^2=2\)

\(\Leftrightarrow m=\pm\sqrt{2}\) ( TM \(m\le6\))

Vậy..........................................

23 tháng 4 2017

đen ta = (-1)2 - 1(m-5)

=1- m + 5

= -m + 6

phương trình có 2 nghiệm phân biệt x1 ; x2 khi đen ta > 0

tương đương -m + 6 > 0

-m > -6

m > 6 ( điều kiện sát định )

ta có x1 + x2 = -b/a = 2 (1)

2x1 + 3x2 = 7 (2)

từ (1) ; (2) ta có hệ phương trình

* x1 + x2 = 2 ; 2x1 + 3x2 = 7

* 2x1 + 3x2 = 7 ; -2x1 - 2x2 = -4

* x2 = 3 ; x1 + x2 = 2

* x2 = 3 ; x1 + 3 = 2

* x2 = 3 ; x1 = -1

ta có x1 . x2 = c/a = m-5

thay 3.(-1) = m-5

-3 = m-5

m = -3 + 5

m = 2

vậy m = 2 thỏa mảng yêu cầu bài toán

30 tháng 5 2021

Thay m=-1 vào pt ta được: 

\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)

Vậy...

NV
12 tháng 4 2021

\(\Delta'=1+m^2-1=m^2>0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2+1\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2-2x_1-m^2+1=0\Rightarrow x_1^3-2x_1^2-m^2x_1+x_1=0\)

\(\Rightarrow x_1^3-2x_1^2-m^2x_1=-x_1\)

Thế vào bài toán:

\(\left(2x_1-x_2\right)\left(-x_1+2x_2\right)=-3\)

\(\Leftrightarrow-2x_1^2-2x_2^2+5x_1x_2=-3\)

\(\Leftrightarrow-2\left(x_1+x_2\right)^2+9x_1x_2=-3\)

\(\Leftrightarrow-8+9\left(-m^2+1\right)=-3\)

\(\Leftrightarrow m^2=\dfrac{4}{9}\Rightarrow m=\pm\dfrac{2}{3}\)

16 tháng 6 2021

PT có 2 nghiệm phân biệt `<=> \Delta>0`

`<=>3^2-4m>0`

`<=>m<9/4`

Viet: 

`x_1+x_2=-3` (1)

`x_1x_2=m` (2)

Theo đề: `x_2=2x_1 <=> 2x_1-x_2=0` (3)

Từ (1) và (3) ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-3\\2x_1-x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-2\end{matrix}\right.\)

Thay vào (2): `(-1).(-2) = m <=> m=2`

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

Δ=(2m+5)^2-4(-2m-6)

=4m^2+20m+25+8m+24

=4m^2+28m+49

=(2m+7)^2>=0

Để phương trình có hai nghiệm phân biệt thì 2m+7<>0

=>m<>-7/2

|x1|+|x2|=7

=>x1^2+x2^2+2|x1x2|=49

=>(x1+x2)^2-2x1x2+2|x1x2|=49

=>(2m+5)^2-2(-2m-6)+2|2m+6|=49

=>4m^2+20m+25+4m+12+2|2m+6|=49

=>4m^2+24m-12+4|m+3|=0

TH1: m>=-3

=>4m^2+24m-12+4m+12=0

=>4m^2+28m=0

=>m=0(nhận) hoặc m=-7(loại)

TH2: m<-3

=>4m^2+24m-12-4m-12=0

=>4m^2+20m-24=0

=>m^2+5m-6=0

=>m=-6(nhận) hoặc m=-1(loại)

14 tháng 3 2022

\(\Delta'=16-m\)Để pt có 2 nghiệm pb x1 ; x2 khi 

\(\Delta'>0\Leftrightarrow16-m>0\Leftrightarrow m< 16\)

Theo Vi et \(\hept{\begin{cases}x_1+x_2=8\left(1\right)\\x_1x_2=m\left(2\right)\end{cases}}\)

Ta có \(x_1-x_2=2\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=10\\x_2=x_1-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\)

Thay vào (2) ta được \(m=5.3=15\)

Δ=(-4m)^2-4(4m^2-m+2)

=16m^2-16m^2+4m-8=4m-8

Để phương trình có hai nghiệm phân biệt thì 4m-8>0

=>m>2

|x1-x2|=2

=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

=>\(\sqrt{\left(4m\right)^2-4\left(4m^2-m+2\right)}=2\)

=>\(\sqrt{16m^2-16m^2+4m-8}=2\)

=>\(\sqrt{4m-8}=2\)

=>4m-8=4

=>4m=12

=>m=3(nhận)