K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta có : \(\dfrac{200+201}{201+202}=\dfrac{200}{201+202}+\dfrac{201}{201+202}\)

\(\dfrac{200}{201}>\dfrac{200}{201+202}\) ; \(\dfrac{201}{202}>\dfrac{201}{201+202}\)

\(\Rightarrow\dfrac{200}{201}+\dfrac{201}{202}>\dfrac{200+201}{201+202}\)

21 tháng 4 2017

Ta có \(\dfrac{200+201}{201+202}=\dfrac{200}{201+202}+\dfrac{201}{201+202}\)

\(\dfrac{200}{201}>\dfrac{200}{201+202}\) ; \(\dfrac{201}{202}>\dfrac{201}{201+202}\)

\(\Rightarrow\dfrac{200}{201}+\dfrac{201}{202}>\dfrac{200+201}{201+202}\)

26 tháng 4 2015

\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)

Mà \(201<201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)

\(\frac{201}{202}>\frac{201}{201+202}\)

=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

10 tháng 4 2015

\(\frac{200}{201}+\frac{201}{202}=1,99...>1>\frac{401}{403}=\frac{200+201}{201+202}\)

11 tháng 4 2018

\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)

Mà \(201< 201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)

\(\frac{201}{202}>\frac{201}{201+202}\)

Vậy \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

24 tháng 4 2016

Gọi d là UCLN(n,n+1)

Ta có:n+1 chia hết cho d

         n chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 tối giản

24 tháng 4 2016

ta co:(n,n+1)=dn

talai co:(n+1)-n=1 chia het cho d suy ra d=1.vayn/n+1 toi gian

10 tháng 5 2016

b)2014/2014*2015=2014:2014/2014*2015:2014=1/2015(rút gọn phân số)

    2015/2015*2015=2015:2015/2015*2016:2015=1/2016(rút gọn phân số)

Mà 1/2015>1/2016

=>2014/2014*2015>2015/2015*2015

10 tháng 5 2016

b.2014/2014×2015 và 2015/2015×2016

6 tháng 7 2016

Nếu là so sánh thì B>A vì mỗi phân số của B đều lớn hơn 1 và B nhiều số hạng hơn còn A thì kém về 2 mặt.

Chúc em học tốt^^

Ta có:

\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)

Do\(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\)

\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}\)

\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

7 tháng 4 2016

Ta có:\(\frac{200}{201}>\frac{200}{201+202}và\frac{201}{202}>\frac{201}{201+202}\)

Suy ra\(\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}=\frac{200+201}{201+202}\)

Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

7 tháng 4 2016

Ta co:\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)

Vi \(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)

17 tháng 5 2018

a)

Vì \(\frac{2009}{2010}< 1\Rightarrow\frac{2009}{2010}< \frac{2009+1}{2010+1}=\frac{2010}{2011}\)

Cần nhớ:

Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

Và tương tự:  \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\left(n\inℕ^∗\right)\)

b)Ta có:

 \(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}}=\frac{1}{81^{100}}\)

\(\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}=\frac{1}{64^{100}}\)

Vì: \(81^{100}>64^{100}\Leftrightarrow\frac{1}{81^{100}}< \frac{1}{64^{100}}\Leftrightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)

c) Ta có:

\(\frac{200+201}{201+202}=\frac{401}{403}< 1\)

\(\frac{200}{201}+\frac{201}{202}=1-\frac{1}{201}+1-\frac{1}{202}=2-\left(\frac{1}{201}+\frac{1}{202}\right)>1\)

=>\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)