K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


21 tháng 4 2017

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


23 tháng 4 2019

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi

⇒ AD // BC

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi ⇒ AB = BC = CD = DA

Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên

⇒ AE = EB = BF = FC = CG = GD = DH = HA.

ΔAEH có góc A = 60º và AE = AH nên là tam giác đều

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Lại có ΔAEH đều

⇒ EH = AH = AE.

Chứng minh tương tự : FG = FC = CG

⇒ EB = BF = FG = GD = DH = HE.

Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.

Bạn tham khảo ở link này nha :

https://h.vn/hoi-dap/question/246529.html

~~ Hok tốt ~~

Bài giải này cùng link : https://h.vn/hoi-dap/question/246529.html   nên bạn tham khảo nhé 

7 tháng 8 2019

Chứng minh được M Q = N P = 1 2 B D  

Chứng minh tam giác ABD đều, suy ra được MN = BN = NP  PD = DQ = QM

Chứng minh các góc của đa giác MBNPDQ bằng nhau và cùng bằng 1200.

Từ đó quy ra đa giác MBNPDQ là lục giác đều (ĐPCM).

2 tháng 12 2015

Số đo một góc trong lục giác đều là :\(180\times\left(6-2\right):6=720:6=120\left(độ\right)\)

ABCD là hình thoi =>AB=BC=CD=AD hay 1/2AB=1/2BC=1/2CD=1/2AD

Tam giác AHE có AH=AE (AH=1/2AD;AE=1/2AB)

=> Tam giác AHE cân . Mà A =60 (độ)

=> Tam giác AHE đều nên AHE=AEH=60 (độ)

Mặt khác góc DHE và góc HEB lần lượt kề bù vs AHE và AEH

=>DHE=HEB=120 (độ)

C/m tương tự ta có : HGF=BFG=120 (độ)

Lại có : ABCD là hình thoi có A =60 =>C=60 và D=B=120 (độ)

Lục giác HEBFGD có số đo mỗi góc bằng 120(độ) (cmt)

=> HEBFGD là lục giác đều

....................Đpcm

Hay cách khác cậu có thể c/m lục giác đều bằng cách c/m 6 cạnh bằng nhau thì sẽ dễ và nhanh hơn cách làm này,đương nhiên mk cux pit c/m cách lm đó n mk k tkick z pn tham khảo cách làm này na mặc dù nó hơi dài .!!!

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

NV
6 tháng 8 2021

Do ABCD là hình thoi \(\Rightarrow\Delta BCD\) cân tại C

Mà \(C=60^0\Rightarrow\Delta BCD\) đều

Hoàn toàn tương tự, ta có tam giác ABD đều

\(\Rightarrow AB=BC=CD=DA=BD\) (1)

Gọi O là giao điểm 2 đường chéo \(\Rightarrow OA\perp OB\)

Trong tam giác vuông OAB, do E là trung điểm AB nên OE là trung tuyến ứng với cạnh huyền

\(\Rightarrow OE=\dfrac{1}{2}AB\) (2)

Mà O là trung điểm BD (tính chất hình thoi) \(\Rightarrow OB=\dfrac{1}{2}BD\) (3)

(1);(2);(3) \(\Rightarrow OE=OB\)

Hoàn toàn tương tự, ta có: 

\(OE=OB=OF=OG=OD=OH\)

\(\Rightarrow\) Các điểm E, B, F, G, D, H cùng thuộc 1 đường tròn tâm O bán kính OB

NV
6 tháng 8 2021

undefined

24 tháng 11 2022

Xét ΔABD có AB=AD và góc BAD=60 độ

nên ΔABD đều

Ta có: ΔDAB cân tại D

mà DE là đường trung tuyến

nên DE vuông góc với BE

=>E nằm trên đường tròn đường kính BD(1)

Ta có:ΔBAD cân tại B

ma BH là đường trung tuyến

nên BH vuông góc với HD

=>H nằm trên đường tròn đường kính BD(2)

Xét ΔCBD có CB=CD và góc BCD=60 độ

nên ΔCBD đều

Ta có: ΔBDC cân tại D

mà DF là đường trung tuyến

nen DF vuông góc với BF

=>F nằm trên đường tròn đường kính BD(3)

Ta có: ΔBDC cân tại B

mà BG là đường trung tuyến

nên BG vuông góc với GD
=>G nằm trên đường tròn đường kính BD(4)

Từ (1), (2), (3) và (4) suy ra E,B,F,G,D,H cùng nằm trên 1 đường tròn

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

22 tháng 10 2021

Xét ΔACB có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔACB

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: \(EH=\dfrac{BD}{2}=\dfrac{AC}{2}\left(3\right)\)

Từ (1) và (3) suy ra EF=EH

Xét tứ giác EHGF có 

EF//GH

EF=GH

Do đó: EHGF là hình bình hành

mà EF=EH

nên EHGF là hình thoi

24 tháng 10 2021

mình cảm ơn nhiều ạ